@ In a trapezium PQRS, PQ || SR. The diagonals PR and QS intersect at O. If OP = 3 cm, OR = 2 cm and OS = 4 cm, then the length of side OQ is:
(a) 2 cm
(b) 4 cm
(c) 6 cm
(d) 8 cm
Answers
Answer:
B) 4 cm
Step-by-step explanation:
⇒
⇒ RS
⇒ RSPQ
⇒ RSPQ
⇒ RSPQ =
⇒ RSPQ = 3
⇒ RSPQ = 32
⇒ RSPQ = 32
⇒ RSPQ = 32
⇒ RSPQ = 32 In △PQR and △RXS
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence,
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR)
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR)
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =(
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 3
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 )
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2 =
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2 = 9
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2 = 94
⇒ RSPQ = 32 In △PQR and △RXS∠SRX=∠QPX (alternate angles)Also, ∠RSX=∠PQX (alternate angles)∴△PQR≅△RXS by AA similarity theorem.Hence, ar(△RXS)ar(△PQR) =( 32 ) 2 = 94
Answer:
c) 6 cm
Step-by-step explanation:
pls mark brainliest.