@ Moderator →_→
@ starಠ_ʖಠಠ︵ಠ
@ Best Users.. ️️️
please answer this question
in 2 min
please
Answers
Answer:
I don't know
Step-by-step explanation:
please make me brelint
Answer:
Given :-
\begin{gathered} \sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}
3[
</p><p>x
</p><p>z
y
w</p><p>
]=[
</p><p>x
</p><p>−1
6
2w</p><p>
]+[
</p><p>4
</p><p>z+w
x+y
3</p><p>
]
To Find :-
Values of x, y and z
Solution :-
\begin{gathered}\sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}
3[
</p><p>x
</p><p>z
y
w</p><p>
]=[
</p><p>x
</p><p>−1
6
2w</p><p>
]+[
</p><p>4
</p><p>z+w
x+y
3</p><p>
]
\begin{gathered} \sf : \implies\begin{bmatrix} < /p > < p > \sf 3x & \sf3 y\\ < /p > < p > \sf 3z & \sf3 w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x + 4 & \sf 6 + x + y\\ < /p > < p > \sf - 1 + z + w & \sf 2w + 3 < /p > < p > \end{bmatrix}\end{gathered}
:⟹[
</p><p>3x
</p><p>3z
3y
3w</p><p>
]=[
</p><p>x+4
</p><p>−1+z+w
6+x+y
2w+3</p><p>
]
Comparing the corresponding elements of these two matrices we get :-
\sf 3x = x + 43x=x+4
\sf : \implies 2x = 4:⟹2x=4
\bf : \implies x = 2:⟹x=2
\sf 3y = 6 + x + y3y=6+x+y
\sf : \implies 2y = 6 + 2:⟹2y=6+2
\sf : \implies 2y = 8:⟹2y=8
\bf : \implies y = 4:⟹y=4
\sf 3w = 2w + 33w=2w+3
\bf : \implies w = 3:⟹w=3
\sf 3z = - 1 + z + w3z=−1+z+w
\sf : \implies 2z = - 1 + 3:⟹2z=−1+3
\sf : \implies 2z = 2:⟹2z=2
\bf : \implies z = 1:⟹z=1
x = 2
y = 4
z = 1
w = 3