Math, asked by shivasinghmohan629, 1 month ago

@ Moderator →_→

@ starಠ_ʖಠಠ︵ಠ

@ Best Users.. ️️️

please answer this question

in 2 min

please​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by ghoruimohan123
0

Answer:

I don't know

Step-by-step explanation:

please make me brelint

Answered by ramroopbharati
0

Answer:

Given :-

\begin{gathered} \sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}

3[

</p><p>x

</p><p>z

y

w</p><p>

]=[

</p><p>x

</p><p>−1

6

2w</p><p>

]+[

</p><p>4

</p><p>z+w

x+y

3</p><p>

]

To Find :-

Values of x, y and z

Solution :-

\begin{gathered}\sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}

3[

</p><p>x

</p><p>z

y

w</p><p>

]=[

</p><p>x

</p><p>−1

6

2w</p><p>

]+[

</p><p>4

</p><p>z+w

x+y

3</p><p>

]

\begin{gathered} \sf : \implies\begin{bmatrix} < /p > < p > \sf 3x & \sf3 y\\ < /p > < p > \sf 3z & \sf3 w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x + 4 & \sf 6 + x + y\\ < /p > < p > \sf - 1 + z + w & \sf 2w + 3 < /p > < p > \end{bmatrix}\end{gathered}

:⟹[

</p><p>3x

</p><p>3z

3y

3w</p><p>

]=[

</p><p>x+4

</p><p>−1+z+w

6+x+y

2w+3</p><p>

]

Comparing the corresponding elements of these two matrices we get :-

\sf 3x = x + 43x=x+4

\sf : \implies 2x = 4:⟹2x=4

\bf : \implies x = 2:⟹x=2

\sf 3y = 6 + x + y3y=6+x+y

\sf : \implies 2y = 6 + 2:⟹2y=6+2

\sf : \implies 2y = 8:⟹2y=8

\bf : \implies y = 4:⟹y=4

\sf 3w = 2w + 33w=2w+3

\bf : \implies w = 3:⟹w=3

\sf 3z = - 1 + z + w3z=−1+z+w

\sf : \implies 2z = - 1 + 3:⟹2z=−1+3

\sf : \implies 2z = 2:⟹2z=2

\bf : \implies z = 1:⟹z=1

x = 2

y = 4

z = 1

w = 3

PLEASE MARK BRANLIEST AND LIKE ANSWER

Similar questions