Math, asked by shivasinghmohan629, 1 month ago

@ Moderator (☞゚ヮ゚)☞

@ star(。◕‿◕。)➜(✧Д✧)→

@ Best Users.. ️️️ ಠಿヮಠ

please answer this question

in 2 min

please​​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by mathdude500
11

\large\underline{\sf{Given \:Question - }}

\rm :\longmapsto\:3\bigg[ \begin{matrix}x&y \\ z&w \end{matrix} \bigg] = \bigg[ \begin{matrix}x&6 \\  - 1&2w \end{matrix} \bigg] + \bigg[ \begin{matrix}4&x + y \\ z + w&3 \end{matrix} \bigg]

Find the values of x, y, z and w.

\large\underline{\sf{Solution-}}

Given matrix equation is

\rm :\longmapsto\:3\bigg[ \begin{matrix}x&y \\ z&w \end{matrix} \bigg] = \bigg[ \begin{matrix}x&6 \\  - 1&2w \end{matrix} \bigg] + \bigg[ \begin{matrix}4&x + y \\ z + w&3 \end{matrix} \bigg]

can be rewritten as

\rm :\longmapsto\:\bigg[ \begin{matrix}3x&3y \\ 3z&3w \end{matrix} \bigg] = \bigg[ \begin{matrix}x + 4&6 + x + y \\  - 1 + z + w&2w + 3 \end{matrix} \bigg]

So, on comparing, we get

 \red{\rm :\longmapsto\:3x = x + 4}

 \red{\rm :\longmapsto\:3x - x =  4}

 \red{\rm :\longmapsto\:2x =  4}

 \red{\rm :\longmapsto\:x =  2}

Also,

 \green{\rm :\longmapsto\:3y = 6 + x + y}

 \green{\rm :\longmapsto\:3y  - y= 6 + 2}

 \green{\rm :\longmapsto\:2y= 8}

 \green{\rm :\longmapsto\:y= 4}

Also,

 \blue{\rm :\longmapsto\:3w = 2w + 3}

 \blue{\rm :\longmapsto\:3w -  2w = 3}

 \blue{\rm :\longmapsto\:w = 3}

Also,

 \purple{\rm :\longmapsto\:3z =  - 1 + z + w}

 \purple{\rm :\longmapsto\:3z - z =  - 1 + 3}

 \purple{\rm :\longmapsto\:2z=  2}

 \purple{\rm :\longmapsto\:z=  1}

Answered by madhav5245
2

x=2

y=4

w=3

z=1

Explained in very brilliant manner in above.

Similar questions