Physics, asked by BrainlyIshu, 1 month ago

@ Moderators

@ Brainly Stars

@ Best Users

Find thd ratio of distances of closest approach of a proton and an alpha particle projected towards the same nucleus with the same initial kinetic energy.


✔ Quality Answer Needed

❎ No Spam

⚡ Spam Will Be Reported on the Spot.

Answers

Answered by SparklingBoy
113

To Find :-

The ratio of distances of closest approach of a proton and an alpha particle projected towards the same nucleus with the same initial kinetic energy.

Solution :-

We Know,

 \text m_ \alpha  = 4\text{amu}

\text m_\text p = 1\text{amu}

Calculating Kinetic Energies :

⏩ For α - particle :

\text{K.E}_\alpha  =  \frac{1}{2} \text m_ \alpha\text  v_ \alpha  {}^{2}  \\

\text{K.E}_\alpha  =  \frac{1}{2} \times 4\times \text  v_ \alpha  {}^{2}  \\

  \large\green{ \pmb{\bf{K.E}_\alpha  = 2 v_ \alpha  {}^{2}}} \\

⏩ For proton :

\text{K.E}_\text p  =  \frac{1}{2} \text m_ \text p\text  v_ \text p  {}^{2}  \\

\text{K.E}_\text p  =  \frac{1}{2} \times 1\times \text  v_ \text p  {}^{2}  \\

  \large\green{ \pmb{\bf{K.E}_\text p  = \dfrac{1}{2} v_ \text p  {}^{2}}} \\

As Given in Question kinetic energy is same of both α - particle and proton :

 \dfrac{\text K.\text E_ \alpha }{\text K.\text E_\text p}  = 1 \\

:\longmapsto \frac{2 \times  {\text v_ \alpha }^{2} }{ \frac{1}{2} \times\text  v_\text p  {}^{2}  } = 1  \\

:\longmapsto \text v_\text p {}^{2}  = 4 \text v_ \alpha  {}^{2} \\ 

\purple{ \Large :\longmapsto  \underline {\boxed{{\pmb{\bf v_p = 2v_\alpha}} }}}

We Have 3rd Equation of Motion as :

 \pink{ \bigstar \:  \: } \large \bf \orange{ \underbrace{ \underline{ {v}^{2} -  {u}^{2} = 2as  }}}

⏩ Applying 3rd Equation For α - particle

:\longmapsto\text v_ \alpha  {}^{2}  - \text u_ \alpha  {}^{2}  = 2\text a\text s_ \alpha  \\

As Initial Velocity is 0

:\longmapsto\text v_ \alpha  {}^{2} - 0 = 2\text a\text s_ \alpha  \\

 \red{\large \pmb{ \bf 2as_ \alpha  = v_ \alpha  {}^{2} }} \:  -  -  - (1)

⏩ Applying 3rd Equation For proton :

:\longmapsto\text v_ p  {}^{2}  - \text u_ p  {}^{2}  = 2\text a\text s_ p  \\

As Initial Velocity is 0

:\longmapsto\text v_ p  {}^{2} - 0 = 2\text a\text s_ p  \\

 \red{\large{ \bf 2as_ p  = v_ p  {}^{2} }} \:  -  -  - (2)

Dividing (2) by (1) :

\pmb{\bf\dfrac{s_{\alpha}}{s_p} =  \frac{ {v_ \alpha }^{2} }{v_p {}^{2} } }  \\

Putting \pmb{\bf v_p = 2v_\alpha}

:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} =  \frac{ {v_ \alpha }^{2} }{(2v_ \alpha)  {}^{2} }  \\

:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} =  \frac{{ \cancel{v_ \alpha }^{2}} }{4 \:  \cancel{v_ \alpha  {}^{2} }}  \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\pmb{\dfrac{s_{p}}{s_ \alpha } =  \frac{4}{1} } }}}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{Required  \: Ratio = 4 :1}}}}}

Answered by NewtonBaba420
49

See the Answer in Attachment

Hope It helps

Attachments:
Similar questions