Math, asked by heer588110, 1 month ago

@ Moderators
@ MathsAryabhatta
@ Genius, Ace, Expert
@ Other best users
Solve for n
  \frac{ {9}^{n}  \times  {3}^{2}  \times  {3}^{n} - (27 {)}^{n}  }{(  {3}^{ {3})^{5} }  \times  {2}^{3}   }

√No Spam
√It will be reported
√Need it urgently
√Solve it fast and correctly​

Answers

Answered by 12thpáìn
2

n = 4

Step by step explanation

\\\sf{~~~~\implies~~~~\dfrac{ {9}^{n} \times {3}^{2} \times {3}^{n} - (27 {)}^{n} }{( {3}^{ {3})^{5} } \times {2}^{3} }  =  \dfrac{1}{27} }

\sf{~~~~\implies~~~~\dfrac{ {3}^{2n} \times {3}^{2} \times {3}^{n} - (3 {)}^{3n} }{ {3}^{15}  \times {2}^{3} }  =  \dfrac{1}{ {3}^{3} } }

\sf{~~~~\implies~~~~\dfrac{ {3}^{2n + 2 + n}  - (3 {)}^{3n} }{ {3}^{15}  \times {2}^{3} }  =  \dfrac{1}{ {3}^{3} } }

\sf{~~~~\implies~~~~\dfrac{ {3}^{3n + 2}  - (3 {)}^{3n} }{ {3}^{15}  \times {2}^{3} }  =  \dfrac{1}{ {3}^{3} } }

\sf{~~~~\implies~~~~\dfrac{ {3}^{3n }( {3}^{2}   - 1) }{ {3}^{15}  \times 8 }  =  \dfrac{1}{ 27} }

\sf{~~~~\implies~~~~\dfrac{ {3}^{3n }( 9   - 1) }{ {3}^{15}  \times 8 }  =  \dfrac{1}{ 27} }

\sf{~~~~\implies~~~~\dfrac{ {3}^{3n } \times 8 }{ {3}^{15}  \times 8 }  =  \dfrac{1}{ 27} }

\sf{~~~~\implies~~~~\dfrac{ {3}^{3n }  }{ {3}^{15}   }  =  \dfrac{1}{ 27} }

\sf{~~~~\implies~~~~{ {3}^{3n }  } =  \dfrac{ {3}^{15} }{ {3}^{3} } }

\sf{~~~~\implies~~~~{ {3}^{3n }  } =  {3}^{12}  }

\sf{~~~~\implies~~~~{ 3n  } =  12  }

\sf{~~~~\implies~~~~{ n  } =  4  } \\  \\  \\

\huge{\frak{~~~~~~~~n = 4 }}\\

  • \tiny{\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}
Answered by jaswasri2006
0

 \huge \tt \: n = 4

Similar questions