Math, asked by BrainIyQuestioner, 1 month ago

@ Moderators 

@ Stars 

@ Best Users

Topic - Arthematic Progression

If the 3rd term of an AP is 4
and 9th term is -8
then which term is 0

Answers

Answered by SparklingBoy
203

\large \bf \clubs \:  Given :-

For an A.P :

3rd Term =  \sf a_3 = 4

9th term = \sf a_9 = - 8

-----------------------

\large \bf \clubs \:   To \:  Find :-

Which term of the corresponding A.P is 0

-----------------------

\large \bf \clubs \:   Main \:  Formula  :-

nth term of an A.P is given by :

  \bf \large a_n = a + (n - 1)d

Where :

  • a = First Term

  • d = Common Difference

-----------------------

\large \bf \clubs \:   Solution  :-

Let a and d be the first term and common difference of the corresponding A.P. respectively.

Hence ,

 \large \sf a_3 = 4 \\  \\  \large\bf{ a + 2d = 4} \: -  -  -  - (1)

\large \sf a_9 =  - 8 \\  \\  \large\bf{ a + 8d =  - 8} \: -  -  -  - (2)

Subtracting (1) From (2) :

:\longmapsto\sf6d =  - 12 \\  \\ \LARGE \purple{ :\longmapsto  \underline {\boxed{{\bf d =   - 2} }}}

Putting Value of d in (1) :

\sf a + 2 \times ( - 2) = 4 \\  \\  \LARGE\purple{ :\longmapsto\underline  {{{\boxed{{\bf a = 8} }}}}}

Now,

Let nth term of the A.P. is zero :

Hence ,

\sf a_n = 0 \\  \\ :\longmapsto\sf a + (n - 1)d = 0 \\  \\ :\longmapsto \sf8 + (n - 1)( - 2) = 0 \\  \\ :\longmapsto\sf8 - 2n + 2 = 0 \\  \\ :\longmapsto\sf2n = 10 \\  \\ \LARGE \purple{ :\longmapsto  \underline {\boxed{{\bf n = 5} }}}

\underline{\underline \pink{\pmb{ \mathfrak{ \text{H}ence \:  5th  \: term \:  of  \: the \:  \bold{ A.P} \:  i s \:  \bf 0}}}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------


rsagnik437: Great ! :)
Answered by rohithkrhoypuc1
98

\underline{\purple{\ddot{\Mathsdude}}}

☆☆Answered by Rohith kumar maths dude :-

▪We know that ,

Ap=an=a+(n-1)d

☆☆Here given:-

Third term is 4 9th term is -8

a3=a+(3-1)d a9=a+(9-1)d

4=a+2d -8=a+8d

4-2d=a -8-8d=a

a=4-2d ( i) a= -8d-8 (ii)

☆☆☆From 1 and 2:-

4-2d=-8d-8

-2d+8d=-8-4

6d=-12

d=-2

☆☆Putting value of d in 2nd equation

we get,

a=4-2d

a=4-2 (-2)

a= 4+4

a=8

Here we need to check that which term of an ap is zero.

So,

an=0

Also a=8 and d=-2

In the given formula

an=a+(n-1)d

Applying the values in formula

we get,

0=8+(n-1)×-2

0=8-2n+2

0=10-2n

2n=10

n=10/2

n=5.

Hence 5th term of an ap is zero .

Hope it helps u mate :-

Thank you.

Similar questions