Math, asked by Renumahala2601, 1 month ago

@ Moderators  @ Stars  @ Best Users Topic - Arthematic Progression If the 3rd term of an AP is 4 and 9th term is -8 then which term is 0 ​

Answers

Answered by Anonymous
350

Given : An A.P 3rd Term = {\sf{a_{3}}}= 4 & 9th Term = {\sf{a_{9}}}= -8.

To Find : Find the term of the corresponding A.P is 0 ?

_________________________

Solution : Let the nth term to be x.

~

\underline{\frak{As ~we~ know ~that~:}}

  • \boxed{\sf\purple{a_{n}~=~a~+~\bigg(n~-~1\bigg)d}}

~

Where,

  • a = First Term
  • d = Common Difference

~

◗Here, a and b be the first term and common difference of the corresponding A.P respectively.

~

Therefore,

  • {\sf{a_{3}~=~4}}

{\sf{a~+~2d~=~4~~~~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{1~Eqⁿ}\bigg\rgroup}}

  • {\sf{a_{9}~=~- 8}}

{\sf{a~+~8d~=~- 8~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{2~Eqⁿ}\bigg\rgroup}}

~

  • Substituting (1) From (2)

\dashrightarrow{\sf{6d~=~- 12}}

\dashrightarrow\boxed{\sf{d~=~- 2}}

~

  • Putting Value of d in (1)

\dashrightarrow{\sf{a~+~2~×~(- 2)~=~4}}

\dashrightarrow\boxed{\sf{a~=~8}}

~

Now,

  • Let nth term of A.P. is zero :

~

Henceforth,

\qquad{\sf:\implies{a_{n}~=~0}}

\qquad{\sf:\implies{a~+~(n~-~1)d~=~0}}

\qquad{\sf:\implies{8~+~(n~-~1)(- 2)~=~0}}

\qquad{\sf:\implies{8~-~2n~+~2~=~0}}

\qquad{\sf:\implies{2n~=~10}}

\qquad{\sf:\implies{n~=~\cancel\dfrac{10}{2}}}

\qquad:\implies{\underline{\boxed{\frak{\pink{n~=~5}}}}}

~

Hence,

\therefore\underline{\bf{\underline{5th~term}}~\sf{of~the~A.P.~is~0}}

Similar questions