at point of contact tangent to circle and radius are perpendicular to each other
Answers
Answered by
1
Answer:
Referring to the figure:
OA=OC (Radii of circle)
Now OB=OC+BC
∴OB>OC (OC being radius and B any point on tangent)
⇒OA<OB
B is an arbitrary point on the tangent.
Thus, OA is shorter than any other line segment joining O to any
point on tangent.
Shortest distance of a point from a given line is the perpendicular distance from that line.
Hence, the tangent at any point of circle is perpendicular to the radius.
solution
Answered by
0
Answer:
Your answer is :
(mark me as Brainliest for 3 free points)
Attachments:
Similar questions