At present the age of the father is 6 times the age of the son. If the age of the father after 6 years is the son Age is 3 times, but how old is the father now?
Answers
Answer:
Let us start by the standard assumptions to solve such kind of sums,
Let the father’s age be y;
Let the son’s age be x;
So from the first condition: y=6x" role="presentation" style="margin: 0px; padding: 0px; display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">y=6xy=6x
After 6 years, the father’s and son’s age will be : y+6 & x+6 years respectively.
Therefore, from the second condition: y+6=3(x+6)" role="presentation" style="margin: 0px; padding: 0px; display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">y+6=3(x+6)y+6=3(x+6)
Substituting y as 6x in above equation we get,
6x+6 = 3x+18 ……………………………. on opening the brackets
3x = 12 or x = 4
Therefore, y = 6x = 6 x 4 = 24
Hence, the father’s age is 24 years and son’s age is 4 years.
Answer:
Given:
To find:
Solution:
________________