Math, asked by beramadhu2020, 9 months ago

At present the age of the father is 6 times the age of the son. If the age of the father after 6 years is the son Age is 3 times, but how old is the father now?​

Answers

Answered by SANIASAHOO
0

Answer:

Let us start by the standard assumptions to solve such kind of sums,

Let the father’s age be y;

Let the son’s age be x;

So from the first condition: y=6x" role="presentation" style="margin: 0px; padding: 0px; display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">y=6xy=6x

After 6 years, the father’s and son’s age will be : y+6 & x+6 years respectively.

Therefore, from the second condition: y+6=3(x+6)" role="presentation" style="margin: 0px; padding: 0px; display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 15px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">y+6=3(x+6)y+6=3(x+6)

Substituting y as 6x in above equation we get,

6x+6 = 3x+18 ……………………………. on opening the brackets

3x = 12 or x = 4

Therefore, y = 6x = 6 x 4 = 24

Hence, the father’s age is 24 years and son’s age is 4 years.

Answered by Anonymous
2

Answer:

\sf{The \ ages \ of \ father \ and \ son \ are}

\sf{24 \ years \ and \ 4 \ years \ respectively.}

Given:

\sf{\leadsto{At \ present \ the \ age \ of \ the \ father}}

\sf{is \ 6 \ times \ the \ age \ of \ the \ son.}

\sf{\leadsto{The \ age \ of \ the \ father \ after}}

\sf{6 \ years \ is \ times \ the \ son's \ age.}

To find:

\sf{Present \ ages \ of \ father \ and \ son.}

Solution:

\sf{Let \ the \ age \ of \ the \ father \ be \ x \ and}

\sf{the \ age \ of \ the \ son \ be \ y.}

\sf{According \ to \ the \ first \ condition}

\sf{x=6y}

\sf{\therefore{x-6y=0...(1)}}

\sf{According \ to \ the \ second \ condition}

\sf{(x+6)=3(y+6)}

\sf{\therefore{x+6=3y=18}}

\sf{\therefore{x-3y=12...(2)}}

\sf{Subtract \ equation (1) \ from \ equation (2),}

\sf{we \ get}

\sf{x-3y=12}

\sf{-}

\sf{x-6y=0}

________________

\sf{3y=12}

\sf{\therefore{y=\dfrac{12}{3}}}

\boxed{\sf{\therefore{y=4}}}

\sf{Substitute \ y=4 \ in \ equation (1), \ we \ get}

\sf{x+6(4)=0}

\boxed{\sf{\therefore{x=24}}}

\sf\purple{\tt{\therefore{The \ ages \ of \ father \ and \ son \ are}}}

\sf\purple{\tt{24 \ years \ and \ 4 \ years \ respectively.}}

Similar questions