Physics, asked by susillama8307, 11 months ago

At room temperature (27.0°C) the resistance of a heating element is 100 Ω. What is the temperature of the element if the resistance is found to be 117 Ω (Given that the temperature coefficient of the material of the resistor is 1.70 × 10⁻⁴ °C⁻¹)?

Answers

Answered by anjalirodrigues0123
4

Answer:

Hey buddy!!

Take a look at the pic.

I hope this answer will help you!!!!!!

Attachments:
Answered by Anonymous
62

Explanation:

\Large{\pink{\underline{\underline{\sf{\orange{Solution:}}}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow Room temperature, \sf T\:=\:27^{\circ}C

\hookrightarrow Resistance of the heating elememt at T, \sf R\:=\:100\Omega

\hookrightarrow Let \sf T_1 is the increased temperature of the filament

\hookrightarrow Resistance of the heating elememt at \sf T_1, \sf R_1\:=\:100\Omega

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Temperature co-efficient of the material of the filament,

\sf \alpha\:=\:1.70\times 10^{-4}°C^{-1}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \alpha is given by the relation,

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\boxed{\sf{\pink{\alpha\:=\: \dfrac{R_1-R}{R(T_1-T)}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf T_1-T\:=\: \dfrac{R_1-R}{R\alpha}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf T_1-27\:=\: \dfrac{117-100}{100(1.7\times 10^{-4})}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf T_1-27\:=\:1000

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\leadsto \sf T_1\:=\:1027^{\circ}C

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\longrightarrow Hence at \sf{\green{T_1\:=\:1027^{\circ}C}}, the resistance of the element is \sf{\pink{117\Omega}}

Similar questions