Math, asked by Anonymous, 27 days ago

@ ʙʀᴀɪɴʟʏ ᴜsᴇʀs!!
@ ʙʀᴀɪɴʟʏ sᴛᴀʀᴛs!!
@ ᴍᴏᴅᴇʀᴀᴛᴏʀs!!
@ᴍᴀᴛʜs ᴀʀʏᴀʙʜᴀᴛᴛᴀ!!

☛  \: cos (\frac{\pi}{4}  - x) \: cos{\pi}{4}  - y)  - \: sin( \frac{\pi}{4} )sin( \frac{\pi}{4}  - y) = sin(x + y)


➽Aɴsᴡᴇʀ ᴛʜɪs ᴀs sᴏᴏɴ ᴀs ғᴀsᴛ!!!

☞ɪғ ʏᴏᴜ ᴅᴏɴᴛ ᴋɴᴏᴡ ᴛʜᴇ ᴀɴsᴡᴇʀ ᴛʜᴇɴ ᴘʟᴢ ᴅᴏɴᴛ sᴘᴀᴍ ʜᴇʀᴇ ᴀɴᴅ sᴛᴀʏ ᴀᴡᴀʏ ғʀᴏᴍ ᴍʏ ǫᴜᴇsᴛɪᴏɴ.

➽Plz don't spam!!


☛στнєrωisє rєρσrτє∂!!!​

Answers

Answered by papakafighterplane
48

Step-by-step explanation:

☠️Aɴsʀ☠️

cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)cos(pi/4-y)=sin(x+y)

L.H.S:-

cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)

We know that, (If you dont know)

cos(A)cos(B)-sin(A)sin(B)=cos(A+B)

putting the above formula in the equation, we got

cos(pi/4+pi/4-x-y)

cos(pi/2-(x+y))

we also know that, (if you dont know)

cos(pi/2-theta)= sin(theta)

So, from the above equation, we got

cos(pi/2-(x+y))= sin(x+y)= R.H.S

☠️Mʀ Bʀɪɴʟɪs☠️

☠️Mғɪ☠️

Similar questions