Math, asked by isayesgue05, 3 months ago

At time t the resultant force on a particle, of mass 250kg is (300ti-400tj)N. Initially, the particle is at the origin and is moving
with the velocity (2i-3j)m
−1
.
a) Find the acceleration at time t.
b) Find the velocity of the particle at time t
c) Find the position vector of the particle at time t

Answers

Answered by itzbangtanarmy7
0

Answer:

At time t the resultant force on a particle, of mass 250kg is (300ti-400tj)N. Initially, the particle is at the origin and is moving

with the velocity (2i-3j)m

−1

Answered by brokendreams
0

a) Acceleration is \dfrac{6}{5}t \hat{i} - \dfrac{8}{5}t \hat{j} \ m/s^2

b) Velocity is \dfrac{3t^2 + 10}{5} \hat{i} - \dfrac{4t^2 + 15}{5} \hat{j}  \ m/s

c) Position Vector is \dfrac{3t^{3} + 30t }{15} \hat{i} - \dfrac{4t^{3} + 45}{15} \hat{j}  \ m

Step-by-step explanation:

Given: Resultant force on a particle = \vec{F} = 300t \hat{i} - 400t \hat{j} \ N

Mass of the particle = m = 250 \text{ kg}

Velocity of the particle at the origin = \vec{u} = 2 \hat{i} - 3 \hat{j} \ m

To Find: a) acceleration, b) velocity and c) position vector of the particle at time 't'

Solution:

  • Finding acceleration of the particle at time 't'

The force \vec{F} is equal to the product of the mass 'm' and the acceleration ' \vec{a} \ ' of the particle \Rightarrow \vec{F} = m \vec{a}

Therefore, the acceleration will be,

\Rightarrow \text{acceleration, } \vec{a} = \dfrac{\vec{F}}{m}

\Rightarrow \text{acceleration, } \vec{a} = \dfrac{300t \hat{i} - 400t \hat{j} }{250} = \dfrac{300}{250}t \hat{i} - \dfrac{400}{250}t \hat{j}

\Rightarrow \text{acceleration, } \vec{a} = \dfrac{6}{5}t \hat{i} - \dfrac{8}{5}t \hat{j} \ m/s^2

  • Finding velocity of the particle at time 't'

The relation between the acceleration ' \vec{a} \ ' and velocity ' \vec{v} \ ' of the particle is  \Rightarrow \vec{v} = \int \vec{a} dt + \vec{u} given ' \vec{u} \ ' is the velocity of the particle at the origin.

Therefore, the velocity of the particle will be,

\Rightarrow \text{velocity, } \vec{v} = \int \vec{a} dt + \vec{u}

\Rightarrow \text{velocity, } \vec{v} = \int (\dfrac{6}{5}t \hat{i} - \dfrac{8}{5}t \hat{j}) dt + (2\hat{i} - 3\hat{j})

\Rightarrow \text{velocity, } \vec{v} =\dfrac{3}{5}t^2 \hat{i} - \dfrac{4}{5}t^2 \hat{j} + 2\hat{i} - 3\hat{j}

\Rightarrow \text{velocity, } \vec{v} = \dfrac{3t^2 + 10}{5} \hat{i} - \dfrac{4t^2 + 15}{5} \hat{j}  \ m/s

  • Finding position vector of the particle at time 't'

For the velocity ' \vec{v} \ ' of the particle, the position vector is  \Rightarrow \vec{r} = \int \vec{v} dt

Therefore, the position vector of the particle will be,

\Rightarrow \text{position vector, } \vec{r} = \int \vec{v} dt

\Rightarrow \text{position vector, } \vec{r} = \int ( \dfrac{3t^2 + 10}{5} \hat{i} - \dfrac{4t^2 + 15}{5} \hat{j}) dt

\Rightarrow \text{position vector, } \vec{r} =  \dfrac{3t^3 + 30}{15} \hat{i} - \dfrac{4t^3 + 45}{15} \hat{j}

Hence, a) Acceleration is \dfrac{6}{5}t \hat{i} - \dfrac{8}{5}t \hat{j} \ m/s^2

b) Velocity is \dfrac{3t^2 + 10}{5} \hat{i} - \dfrac{4t^2 + 15}{5} \hat{j}  \ m/s

c) Position Vector is \dfrac{3t^{3} + 30t }{15} \hat{i} - \dfrac{4t^{3} + 45}{15} \hat{j}  \ m

Similar questions