at what angel should a body be projected with a velocity 20/sec just to pass over the obstalace 12m high at a horizontal distance of 24m ?take g= 10m/sec
Answers
Answer:
Given:
Initial velocity of projectile (u) = 20 m/s
Horizontal distance (x) = 24 m
Vertical distance (y) = 12 m
Accelration due to gravity (g) = 10 m/s
Explanation:
Equation of trajectory:
θ → Angle of projection
By substituting values in the equation we get:
Taking horizotal motion of body projected from O from O to Awehave,u_(x) =u cos theta =20 cos theta ms^-1),x_(0) =0, x=24 m, a_(x) =0, t=t (say)Asx=x_(0) +u_(x) t + 1/2 a_(x) t_(2)∴24 =0 + ( u cos theta) xx t =(20 cos thera t)ort=(24)/( 20 cos theta) =6/(5 cos theta)Tak∈gverticalupwardmotionofbodyform(O)→(A),
we have : yy=usinθ=20sinθ,y0=0,
y=12m,ay=−10ms−2,t=t
As, y=y0+uyt+12ayt2
:. 12=0+(20sinθ)t+12×(−10)t2
or 12=(20sinθ(20sinθ)×65cosθ5×(65cosθ)2
or 12=24tanθ=5×3625cos2θ
=24tanθ(3605sec2θ
or 12=24tanθ−365(1+tan2θ)or36 tan ^(2) -120 tan theta + 96 =0or3 tan^(2) theta -10 tan theta + 8 =0or (tan theta -2) (3 tan theta -4) =0ortanθ=2or4/3
or θ63∘26'or53∘4'.