Physics, asked by vivekvk302050, 7 months ago

at what angel should a body be projected with a velocity 20/sec just to pass over the obstalace 12m high at a horizontal distance of 24m ?take g= 10m/sec​

Answers

Answered by Anonymous
30

Answer:

 \boxed{\mathfrak{Angle \ of \ projection \ (\theta) = {tan}^{ - 1} (2)  \:  or \:    =  53 \degree}}

Given:

Initial velocity of projectile (u) = 20 m/s

Horizontal distance (x) = 24 m

Vertical distance (y) = 12 m

Accelration due to gravity (g) = 10 m/s

Explanation:

Equation of trajectory:

 \boxed{ \bold{y = xtan \theta -  \frac{g {x}^{2} }{2 {u}^{2}  {cos}^{2} \theta } }}

θ → Angle of projection

By substituting values in the equation we get:

 \rm \implies 12 = 24 \: tan \theta -  \dfrac{10 \times  {(24)}^{2} }{2 \times  {(20)}^{2}  \times  {cos}^{2}  \theta}  \\  \\  \rm \implies 12 = 24 \: tan \theta -  \dfrac{5760}{800 \:  {cos}^{2}  \theta}  \\  \\  \rm \implies 12 = 24 \:tan \theta -  \dfrac{36 \:  {sec}^{2} \theta }{5}  \\  \\  \rm \implies (12 = 24 \:tan \theta -  \dfrac{36 \:  {sec}^{2} \theta }{5} ) \times 5 \\  \\ \rm \implies  60= 120 \:tan \theta -  36 \:  {sec}^{2} \theta  \\  \\  \rm {sec}^{2}  \theta = 1 +  {tan}^{2}  \theta :  \\  \rm \implies 60 = 120 \:tan \theta - 36(1 +  {tan}^{2}  \theta) \\  \\  \rm \implies 60 = 120 \:tan \theta - 36  - 36 {tan}^{2}  \theta) \\  \\  \rm \implies 36 \:  {tan}^{2}  \theta - 120 \: tan \theta + 96 = 0 \\  \\  \rm \implies 12(3 \:  {tan}^{2}  \theta - 10 \: tan \theta + 8) = 0 \\  \\ \rm \implies 3 \:  {tan}^{2}  \theta - 10 \: tan \theta + 8 = 0 \\  \\ \rm \implies 3 \:  {tan}^{2}  \theta - 6 \: tan \theta   - 4\: tan \theta+ 8 = 0 \\  \\ \rm \implies 3  \: tan \theta(tan \theta - 2) - 4(tan \theta - 2) = 0 \\  \\ \rm \implies (tan \theta - 2)(3  \: tan \theta - 4) = 0 \\  \\  \rm \implies tan \theta = 2 \:  \:  \:  \: or \:  \:  \:  \: tan \theta =  \frac{4}{3}  \\  \\  \rm \implies \theta =  {tan}^{ - 1} (2) \:  \:  \:  \: or \:  \:  \:  \: \theta =  {tan}^{ - 1} ( \dfrac{4}{3} ) \\  \\ \rm \implies \theta =  {tan}^{ - 1} (2) \:  \:  \:  \: or \:  \:  \:  \: \theta =  53 \degree

Answered by lila12
11

Taking horizotal motion of body projected from O from O to Awehave,u_(x) =u cos theta =20 cos theta ms^-1),x_(0) =0, x=24 m, a_(x) =0, t=t (say)Asx=x_(0) +u_(x) t + 1/2 a_(x) t_(2)∴24 =0 + ( u cos theta) xx t =(20 cos thera t)ort=(24)/( 20 cos theta) =6/(5 cos theta)Tak∈gverticalupwardmotionofbodyform(O)→(A),

we have : yy=usinθ=20sinθ,y0=0,

y=12m,ay=−10ms−2,t=t

As, y=y0+uyt+12ayt2

:. 12=0+(20sinθ)t+12×(−10)t2

or 12=(20sinθ(20sinθ)×65cosθ5×(65cosθ)2

or 12=24tanθ=5×3625cos2θ

=24tanθ(3605sec2θ

or 12=24tanθ−365(1+tan2θ)or36 tan ^(2) -120 tan theta + 96 =0or3 tan^(2) theta -10 tan theta + 8 =0or (tan theta -2) (3 tan theta -4) =0ortanθ=2or4/3

or θ63∘26'or53∘4'.

Similar questions