Physics, asked by rsponnaluri, 10 months ago

at what angle teeta with the horizontal hould a body be projected so that its horizontal rng equal the maximum height its attains​

Answers

Answered by ShivamKashyap08
53

Correct Question:

At what angle (θ) with the horizontal should a body be projected so that its horizontal range equal the maximum height it attains ?

Answer:

  • The angle (θ) it attains is tan⁻¹ ( 4 ).

Explanation:

\rule{300}{1.5}

From the Range Formula we Know,

R = u² sin 2θ / g

Where,

  • R Denotes Range.
  • u Denotes Initial Velocity.
  • θ Denotes Angle.
  • g Denotes Acceleration due to gravity.

Now,

⇒ R = u² sin 2θ / g

\rule{300}{1.5}

\rule{300}{1.5}

From the Range Formula we Know,

H_{max} = u² sin² θ / 2 g

Where,

  • H_{max} Denotes Height.
  • u Denotes Initial Velocity.
  • θ Denotes Angle.
  • g Denotes Acceleration due to gravity.

Now,

⇒ H_{max} = u² sin² θ / 2 g

\rule{300}{1.5}

\rule{300}{1.5}

According to the Question,

⇒ H_{max} = R

Substituting,

⇒ u² sin² θ / 2 g = u² sin 2θ / g

⇒ sin² θ / 2 = sin 2θ

∵ [ sin 2θ = 2 sinθ cosθ ]

Substituting,

⇒ sin² θ / 2 = 2 sinθ cosθ

⇒ sinθ × sinθ = 2 × 2 sinθ cosθ

⇒ sinθ × sinθ = 4 sinθ cosθ

⇒ sinθ  = 4 cosθ

⇒ tan θ = 4

⇒ θ = tan⁻¹ ( 4 )

θ = tan⁻¹ ( 4 )

The angle (θ) it attains is tan⁻¹ ( 4 ).

\rule{300}{1.5}

Answered by Anonymous
48

Question

At what angle ∅ with the horizontal should a body be projected so that the horizontal range is equal to the maximum height the projectile attains

Solution

  • Angle should be tan^-1(4)

Given

The horizontal range and maximum height should be equal

To finD

Angle of Projection

Now,

Maximum Height is given as :

  • \sf H_{max} = \dfrac{u^2 sin^2 \theta }{2g} ----------(1)

Horizontal Range is given as :

  • \sf R = \dfrac{u^2 sin2 \theta}{g} ---------(2)

Equating relations (1) and (2),

\sf H = R \\ \\

 \dashrightarrow \:  \sf \:  \dfrac{ \cancel{ {u}^{2}}  {sin}^{2} \theta }{2 \cancel{g}}  =  \dfrac{ \cancel{ {u}^{2}} sin2 \theta }{ \cancel{g}}

Also, sin2∅ = 2sin∅cos∅

 \dashrightarrow \:  \sf \:  {sin}^{2} \theta = 4sin \theta \: cos \:  \theta \\  \\  \dashrightarrow \ \sf \:  \frac{sin \:  \theta}{cos \:  \theta}  = 4 \\  \\  \dashrightarrow \:  \sf \: tan \theta = 4 \\  \\   \large{ \dashrightarrow \:  \boxed{ \boxed{ \sf \theta =  {tan}^{ - 1} (4)}}}

Similar questions