At what angle the two vectors of magnitude p + q and p - q should act so the resultant is
Answers
Answered by
72
Use formula in link with F1 = P+Q and F2 = P-Q.
R = √[F1² + F2² + 2F1.F2.cos(α)]
. . = √[(P+Q)² + (P-Q)² + 2(P+Q)(P-Q)cosα]
. . = √[P²+2PQ+Q² + P²-2PQ+Q² + 2(P²-Q²)cosα]
. . = √[2P² + 2Q² + 2(P²-Q²)cosα]
We want R = √[P² + Q²]
√[P² + Q²] = √[2P² + 2Q² + 2(P²-Q²)cosα]
P² + Q² = 2P² + 2Q² + 2(P²-Q²)cosα
2(P²-Q²)cosα = -P² – Q²
cosα = (-P² – Q²)/(2(P²-Q²))
. . . . .= (P² + Q²)/(2(Q² – P²))
R = √[F1² + F2² + 2F1.F2.cos(α)]
. . = √[(P+Q)² + (P-Q)² + 2(P+Q)(P-Q)cosα]
. . = √[P²+2PQ+Q² + P²-2PQ+Q² + 2(P²-Q²)cosα]
. . = √[2P² + 2Q² + 2(P²-Q²)cosα]
We want R = √[P² + Q²]
√[P² + Q²] = √[2P² + 2Q² + 2(P²-Q²)cosα]
P² + Q² = 2P² + 2Q² + 2(P²-Q²)cosα
2(P²-Q²)cosα = -P² – Q²
cosα = (-P² – Q²)/(2(P²-Q²))
. . . . .= (P² + Q²)/(2(Q² – P²))
Answered by
19
Explanation:
hope you have understood
Attachments:
Similar questions