Physics, asked by shekhsalman9765, 10 months ago

At what displacment velocity of body is 1 over 2 under root

Answers

Answered by zahaansajid
1

\mathbb{\underline {ANSWER}}

At displacement ±A/√2

\mathbb{\underline {EXPLANATION}}

Maximum velocity = Aω   where, A is the amplitude

                                                      ω is the angular frequency

Velocity given = \frac{1}{\sqrt{2} } V_{max} = \frac{A\omega}{\sqrt{2} }

We know that,

Velocity of a body in SHM at any point can be given by the equation

\boxed{V =\omega\sqrt{A^{2}-x^{2}  } }

where x is the displacement from mean position

Substituting the values we get,

\frac{A\omega}{\sqrt{2} } = \omega\sqrt{A^{2}- x^{2} }

Cancelling ω on both sides we get,

\frac{A}{\sqrt{2} } = \sqrt{A^{2}-x^{2}  }

Squaring on both sides,

\frac{A^{2} }{2} = A^{2}- x^{2}

x^{2} = A^{2} -\frac{A^{2} }{2}

x^{2} = \frac{A^{2} }{2}

x = \pm\frac{A}{\sqrt{2} }

Similar questions