Physics, asked by sanam78, 1 year ago

at what distance apart would to equal masses of 150 kg need to be placed for the force between them to be 2×
{10}^{ - 5}


AdityaRocks1: is my answer correct ?
AdityaRocks1: tell ?

Answers

Answered by AdityaRocks1
5

 \: as \: you \: know \: the \: force \: of \: attraction \:  \\ between \: two \: bodies \: according \:  \\ to \: inverse \: square \: law \: is \: given \: as \:  =  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: f \:  =  \:  \alpha  \times \frac{m \times m}{ {r}^{2} }  \\  \\  \:  \:  \:  \:  \:  \: where \:  \:  \alpha  \:  =  \: gravitational \: constant \\  \\ but \:  \:  \:  \:  \:  \: f \:  \:  =  \: 2 \times  {10}^{ - 5}  \: newton \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  m \:  =  \: 150 \: kg \\  \\hence \:  \:  \:  \:  \: 2 \times  {10}^{ - 5}  =  \: 6.67  \times \:  {10}^{ - 11}  \times  \:   \frac{150 \times 150}{ {r}^{2} }  \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {r}^{2}  =  \: 6.67 \times  {10}^{ - 11}  \times \frac{150 \times 150}{2 \times  {10}^{ - 5} }  \\  \\ \: \:  \:  \:  \:  \:  \:   {r}^{2}  \:  =  \: 0.075037 \:   \: {m}^{2} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: r \:  =  \: 0.2739 \: m \:  =  \: 0.28 \: m \\  \\ hence \: the \: distance \: between \:  \\ them \: should \: be \: 0.28 \: m.
Hola mate......here is your answer......

hope u understood ^_^

Similar questions