At what distance from a concave mirror of focal length 20 cm should an object 2 cm long be placed in order to get an erect image 8 cm tall?
Answers
Answer :-
The object should be placed at a distance of 15 cm from the concave mirror .
Explanation :-
We have :-
→ Focal length (f) = 20 cm
→ Height of object (hₒ) = 2 cm
→ Height of image (hᵢ) = 8 cm
______________________________
From the formula of magnification of a spherical mirror, we have :-
m = -(v/u) = hᵢ/hₒ
⇒ -(v/u) = 8/2
⇒ v/u = -4
⇒ v = -4u ---(1)
According to sign convention, we know that f and u are always negative for a concave mirror .
So, now putting values in the mirror formula, we get :-
1/v + 1/u = 1/f
⇒ 1/(-4u) + 1/u = 1/(-20)
⇒ -1/4u + 1/u = -1/20
⇒ (-1 + 4)/4u = -1/20
⇒ 3/4u = -1/20
⇒ -4u = 60
⇒ u = 60/-4
⇒ u = -15 cm
The Object should be placed at a distance of 15 cm from the given concave mirror
--------------------------------------------------------------
Step by Step Explanation :
Given Data :-
Concave Mirror
☞ Focal Length (f) = 20 cm
☞ Height of Object (h₀) = 2 cm
☞ Height of Image (h¡) = 8 cm
To Find :-
- Object Distance (u)
Solution :-
from the formula of Magnification of a spherical mirror,
m = h¡/h₀ = -(v/u)
⇒ -(v/u) = 8/2 = 4
⇒ v/u = -4
⇒ v = -4u _____eq(1)
According to Sign Convention Rule,
we know that,
- the values of f and u values are always negative for a concave mirror
now, putting the values in mirror formula, we get
1/v + 1/u = 1/f
so,
⇒ 1/(-4u) + 1/u = 1/(-20)
⇒ [(-4u) + u]/(-4u)(u) = 1/-20
⇒ -20 × (-3u) = -4u²
⇒ 60u = -4u²
⇒ 60 = -4u
⇒ u = 60/-4
⇒ u = -15
_________________________________
- The Object should be placed at a distance of 15 cm from the given concave mirror