Physics, asked by rajeshdhiman2597, 7 months ago

At what forces P + Q and p - Q act so that the resultant √2p^2+Q^2

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) At what forces P+Q and P-Q

act so that the resultant :

 \sqrt{2 {p}^{2}  +  {q}^{2} }

\huge{\blue{\pink{Answer}}}

 \:  \pink \bigstar  \boxed {\bf \red{ \: by \: using \: parallelogram \: of \: law \: of \: addition \: of \: two \: vectors}}

\implies\bf{R^2=\sqrt{P^2+Q^2+2PQcos\theta}}

 \:  \implies \bf{r  =   \sqrt{ {(p}^{2}  +  {q}^{2} + 2pqcos \theta) }}

 \implies \bf{ \sqrt{ {2p}^{2}  + q} =   \sqrt{ {(p + q)}^{2}   +  {(p - q)}^{2}  + 2(p + q)(p - q)cos \theta}}

 \implies \bf{2 {p}^{2}  + q =  {(p + q)}^{2}  +  {(p - q) }^{2}  + 2(p - q)(p + q)cos \theta}

 \:  \implies \bf{2 {p}^{2}  + q =  {p}^{2}  +  {q}^{2}  + 2pq +  {p}^{2} +  {q}^{2}   - 2pq + 2(p(p - q) + q(p - q)cos \theta}

 \implies \bf{ {2p}^{2}  +  {q}^{2}  =  {p}^{2}  +  {q}^{2}  +  {p}^{2}  +  {q}^{2}  + 2( {p}^{2}  - pq  + pq -  {q}^{2} )cos \theta}

 \implies  \bf{2 {p}^{2}  +  {q}^{2} -  {2p}^{2}    -   {2q}^{2}    +  2 {p}^{2}   +  2{q}^{2} cos \theta}

 \implies \bf{   -  {q}^{2}   +(  {2p}^{2}  +  {2q}^{2}) cos \theta}

 \:  \implies \boxed{\bf{cos \theta =  \frac{ {q}^{2} }{2( {p}^{2}  +  {q}^{2}) } }}

 \:  \bigstar \bf{at \:  \theta  = 0}

 \:  \:  \implies \bf{ \cos(0 \degree)  =  \frac{ {q}^{2} }{2 {p}^{2} +  {2q}^{2}  } }

 \:  \:  \implies \bf{1 =  \frac{ {q}^{2} }{ {2p}^{2}  +  {2q}^{2} } }

 \:  \implies \bf{2 {p}^{2}  +  {2q}^{2}  =  {q}^{2} }

 \implies \bf{2 {p}^{2}  +  {2q}^{2} -  {q}^{2}   = 0}

 \:  \implies \bf{2 {p}^{2}  +  {q}^{2}  = 0}

 \:  \implies \bf{2 {p}^{2}  =  -  {q}^{2} }

 \:  \implies \bf{2p = q}

 \:  \implies\boxed{ \bf{p =  \frac{q}{2} }}

Similar questions