Physics, asked by Ronak9285, 11 months ago

At what height above the surface of earth does the acceleration due to gravity become 16% of the value of the surface of the eart

Answers

Answered by nirman95
44

Answer:

To find:

Height at which acceleration due to gravity becomes 16% as compared to Earth surfaces.

Calculation:

Let height be h , radius of Earth be r , gravity at Earth surface be g , gravity at height be g2

 \boxed{ \huge{ \red{ \sf{ \therefore \: g2 = (16\%)g}}}}

Now, we can say that :

 \star \: g2 =  \dfrac{g}{ \bigg \{{1 +  (\dfrac{h}{r} ) \bigg \}}^{2} }

  \implies\:  \dfrac{16}{100}g  =  \dfrac{g}{ \bigg \{{1 +  (\dfrac{h}{r} ) \bigg \}}^{2} }

  \implies\:  \dfrac{16}{100}  =  \dfrac{1}{ \bigg \{{1 +  (\dfrac{h}{r} ) \bigg \}}^{2} }

Taking Square root on both sides:

  \implies\:  \dfrac{4}{10}  =  \dfrac{1}{ \bigg \{{1 +  (\dfrac{h}{r} ) \bigg \}} }

 \implies \: 1 +  \dfrac{h}{r}  =  \dfrac{10}{4}

 \implies \:   \dfrac{h}{r}  =  \dfrac{10}{4} - 1 =  \dfrac{6}{4}  =  \dfrac{3}{2}

 \implies \: h =  \dfrac{3r}{2}

So final answer is:

  \boxed{ \huge{ \orange{ \sf{ \: h =  \dfrac{3r}{2}}}}}

Answered by Anonymous
28

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

Given :

  • At a height, acceleration due to gravity becomes 16% of its original value

_____________________

To Find :

  • Height at which the acceleration due to gravity becomes 16%

_____________________

Solution :

So, A.T.Q

\large{\boxed{\boxed{\sf{g_2 \: = \: 16 \% g_1}}}}

Also, in the derivation of Variation of gravitational force due to height above Earth surface. We have

\large{\boxed{\boxed{\sf{g_2 \: = \: \dfrac{g_1}{\bigg(1 \: + \: \dfrac{h}{r} \bigg) ^2}}}}} \\ \\ \implies {\sf{\dfrac{16}{100}g_1 \: = \:\dfrac{g_1}{\bigg(1 \: + \: \dfrac{h}{r} \bigg) ^2}}} \\ \\ \implies {\sf{\dfrac{16}{100} \: = \: \dfrac{1}{\bigg(1 \: + \: \dfrac{h}{r} \bigg) ^2}}} \\ \\ \small {\gray {\dag {\rm{\underline{\: \: \: \: \: \: \: Square \: root \: both \: sides \: \: \: \: \: \: \: }}}}} \gray \dag \\ \\ \implies {\sf{\dfrac{4}{10} \: = \: \dfrac{1}{1 \: + \: \dfrac{h}{r}} }} \\ \\ \implies {\sf{1 \: + \: \dfrac{h}{r} \: = \: \dfrac{10}{4}}} \\ \\ \implies {\sf{\dfrac{h}{r} \: = \: \dfrac{10}{4} \: - \: 1}} \\ \\ \implies {\sf{h \: = \: \dfrac{3r}{2}}}

Value of height is 3r/2

Similar questions