Math, asked by abhi171043, 2 months ago

at what point in the interval [0,2π], does the function sin 2x attain its maximum value?​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) \:  =  \: sin2x \: \:  \: where \: x \:  \in \: [0, \: 2\pi]

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) \:  = \dfrac{d}{dx} \: sin2x \: \:  \:

\rm :\longmapsto\:f'(x) \:  = cos2x \: \dfrac{d}{dx} \: 2x \: \:  \:

\rm :\longmapsto\:f'(x) \:  = cos2x \:  \times 2

\rm :\longmapsto\:f'(x) \:  =2 \:  cos2x \:

For maxima or minima,

\rm :\longmapsto\:f'(x) \:   =  \: 0 \:

\rm :\longmapsto\:2cos2x = 0

\rm :\longmapsto\:cos2x = 0

\rm :\longmapsto\:cos2x = cos\dfrac{\pi}{2}

\rm :\implies\:2x = 2n\pi \:  \pm \: \dfrac{\pi}{2} \:  \: where \: n \: is \: integer

\rm :\implies\:x = n\pi \:  \pm \: \dfrac{\pi}{4} \:  \: where \: n \: is \: integer

As

\rm :\longmapsto\:x \:  \in \: [0,\:  2\pi]

So,

x can attains the value

\rm :\longmapsto\:x = 0, \: \dfrac{\pi}{4}, \: \dfrac{3\pi}{4}, \: \dfrac{5\pi}{4}, \: \dfrac{7\pi}{4}, \: 2\pi

Now, we have to find out the value of f(x), on these critical points.

As,

\rm :\longmapsto\:f(x) = sin2x

So,

 \red{\rm :\longmapsto\:f(0) = sin0 = 0}

 \red{\rm :\longmapsto\:f\bigg(\dfrac{\pi}{4} \bigg)  = sin2\bigg(\dfrac{\pi}{4} \bigg) = sin\bigg(\dfrac{\pi}{2} \bigg) = 1}

 \red{\rm :\longmapsto\:f\bigg(\dfrac{3\pi}{4} \bigg)  = sin2\bigg(\dfrac{3\pi}{4} \bigg) = sin\bigg(\dfrac{3\pi}{2} \bigg) } \\  \red{ \rm \:  =  \: sin\bigg(\pi + \dfrac{\pi}{2} \bigg) = -  sin\bigg(\dfrac{\pi}{2} \bigg) =  - 1}

 \red{\rm :\longmapsto\:f\bigg(\dfrac{5\pi}{4} \bigg)  = sin2\bigg(\dfrac{5\pi}{4} \bigg) = sin\bigg(\dfrac{5\pi}{2} \bigg) } \\  \red{ \rm \:  =  \: sin\bigg(2\pi + \dfrac{\pi}{2} \bigg) =   sin\bigg(\dfrac{\pi}{2} \bigg) =  1}

 \red{\rm :\longmapsto\:f\bigg(\dfrac{7\pi}{4} \bigg)  = sin2\bigg(\dfrac{7\pi}{4} \bigg) = sin\bigg(\dfrac{7\pi}{2} \bigg) } \\  \red{ \rm \:  =  \: sin\bigg(3\pi + \dfrac{\pi}{2} \bigg) = -    sin\bigg(\dfrac{\pi}{2} \bigg) =  -  1}

 \red{\rm :\longmapsto\:f(2\pi) = sin2\pi = 0}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf f(x) = sin2x \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf  \dfrac{\pi}{4} & \sf 1 \\ \\ \sf \dfrac{3\pi}{4} & \sf  - 1\\ \\ \sf \dfrac{5\pi}{4} & \sf 1\\ \\ \sf \dfrac{7\pi}{4} & \sf  - 1 \\ \\ \sf 2\pi & \sf 0\end{array}} \\ \end{gathered}

So,

 \boxed{ \bf{ \: Maximum \: value \: of \: f(x) = 1 \: at \: x \:  =  \: \bigg(\dfrac{\pi}{4} \bigg), \: \bigg(\dfrac{5\pi}{4} \bigg)}}

Similar questions