Math, asked by shubhamsingh4159, 1 month ago

At what point the function f(x, y) = x2 + 2xy + 3y2 + 4x + 6y
has minimum value?​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

➢ Given function is

\rm :\longmapsto\:f =  {x}^{2} + 2xy +  {3y}^{2} + 4x + 6y

On differentiating partially w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial f}{\partial x}  = 2x + 2y + 4

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\:\dfrac{\partial f}{\partial y}  = 2x + 6y + 6

Now, for critical points,

\rm :\longmapsto\:\dfrac{\partial f}{\partial x}  = 0 \:  \: and \:  \: \dfrac{\partial f}{\partial y}  = 0

\rm :\longmapsto\:2x + 2y + 4 = 0

\rm :\longmapsto\:x + y + 2 = 0 -  -  - (2)

and

\rm :\longmapsto\:2x + 6y + 6 = 0

\rm :\longmapsto\:x + 3y + 3 = 0 -  -  - (3)

On Subtracting equation (2) from (3), we get

\rm :\longmapsto\:2y + 1 = 0

\rm :\implies\:y =  - \dfrac{1}{2}

On substituting the value of y in equation (2), we get

\rm :\longmapsto\:x - \dfrac{1}{2}  + 2 = 0

\rm :\longmapsto\:x  + \dfrac{3}{2} = 0

\rm :\implies\:x =  - \dfrac{3}{2}

Hence,

\rm :\longmapsto\:Critical \: point \: is \: \bigg( - \dfrac{3}{2} , \:  - \dfrac{1}{2} \bigg)

Now to check whether this point is of maxima or minima or saddle point or point of inflection.

\rm :\longmapsto\:a = \dfrac{ {\partial }^{2} f}{ {\partial x}^{2} }  = 2

\rm :\longmapsto\:c = \dfrac{ {\partial }^{2} f}{ {\partial y}^{2} }  = 6

\rm :\longmapsto\:b = \dfrac{ {\partial }^{2} f}{ {\partial x \: \partial y} }  = 2

So,

\rm :\longmapsto\:a = 2

\rm :\longmapsto\:b = 2

\rm :\longmapsto\:c = 6

Now, Consider,

\rm :\longmapsto\:ac -  {b}^{2}

\rm \:  =  \:  \: 2 \times 6 -  {2}^{2}

\rm \:  =  \:  \: 12 - 4

\rm \:  =  \:  \: 8

Thus, we have now

\bf :\longmapsto\:ac -  {b}^{2} > 0 \:  \:  \: and \:  \:  \: a > 0

Hence,

\bf :\longmapsto\:f \: is \: minimum \: at \: \bigg( - \dfrac{3}{2} , \:  - \dfrac{1}{2} \bigg)

Additional Information :-

Now, Maxima and minima for 2 variables.

\rm :\longmapsto\:ac -  {b}^{2} > 0, \: a > 0, \: f \: is \: minimum.

\rm :\longmapsto\:ac -  {b}^{2} > 0, \: a  <  0, \: f \: is \: maximum.

\rm :\longmapsto\:ac -  {b}^{2}  =  0, \: f \: has \:a \: saddle \: point.

Similar questions