Math, asked by abhichembrolu4865, 6 months ago

at what points the slopes of the tangents to the curve y=x³/6-3x²/2+11x/2+12 increase ?​

Answers

Answered by MaheswariS
22

\textbf{Given:}

\textsf{Curve is}\;\mathsf{y=\dfrac{x^3}{6}-\dfrac{3x^2}{2}+\dfrac{11x}{2}+12}

\textbf{To find:}

\textsf{The points the slopes of the tangent to the curve increase}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{y=\dfrac{x^3}{6}-\dfrac{3x^2}{2}+\dfrac{11x}{2}+12}

\mathsf{Slope\;of\;tangent}

\mathsf{m=\dfrac{dy}{dx}=\dfrac{3x^2}{6}-\dfrac{6x}{2}+\dfrac{11}{2}}

\mathsf{m=\dfrac{x^2}{2}-\dfrac{6x}{2}+\dfrac{11}{2}}

\mathsf{m=\dfrac{1}{2}[x^2-6x+11]}

\mathsf{Now,}

\mathsf{\dfrac{dm}{dx}=\dfrac{1}{2}[2x-6]=x-3}

\mathsf{\dfrac{dm}{dx}=0\implies\;x=3}

\mathsf{For\;x<3,\;\;\dfrac{dm}{dx}\,<\,0}

\therefore\mathsf{Slope\;m\;is\;decreasing\;in\;(-\infty,3)}

\mathsf{For\;x>3,\;\;\dfrac{dm}{dx}\,>\,0}

\therefore\mathsf{Slope\;m\;is\;increasing\;in\;(3,\infty)}

\textsf{when x=3,}

\mathsf{y=\dfrac{3^3}{6}-\dfrac{3(3)^2}{2}+\dfrac{11(3)}{2}+12}

\mathsf{y=\dfrac{9}{2}-\dfrac{27}{2}+\dfrac{33}{2}+12=\dfrac{9-27+33+24}{2}=\dfrac{39}{2}}

\therefore\mathsf{Slope\;of\;the\;curve\;increase\;at\;\left(3,\dfrac{39}{2}\right)}

Similar questions