Math, asked by subhashbharathi123, 1 year ago

At what rate of compounds interest will ₹1250 amount to ₹1800 in 2 years

Answers

Answered by StarrySoul
28

Answer:

20%

Step-by-step explanation:

\textbf{\underline{\underline{Given\:In\:Question :}}}

 \sf \: Principal = Rs 1250

 \sf \: Amount = Rs 1800

 \sf \: Time = 2 years

Applying Formula For Compound Interest :

 \sf \: Amount = P (1 +  \dfrac{r}{100} ) ^{n}

Putting Values:

 \sf \: 1800 = 1250(1 +  \dfrac{r}{100} ) ^{2}

 \sf \:  \cancel \dfrac{1800}{1250} (1 +  \dfrac{r}{100}) ^{2}

 \sf \:  \dfrac{36}{25}  = (1 +  \dfrac{r}{100} ) ^{2}

 \sf \: ( \dfrac{6}{5} ) ^{ \cancel2}  = (1 +  \dfrac{r}{100} ) ^{ \cancel2}

 \sf \: 1 +  \dfrac{r}{100}  =  \dfrac{6}{5}

 \sf \:  \dfrac{r}{100}  =  \dfrac{6}{5}  - 1

 \sf \:  \dfrac{r}{100}  =  \dfrac{6 - 5}{5}

 \sf \:  \dfrac{r}{100}  =  \dfrac{1}{5}

 \sf \: 5r = 100

 \sf \: r =  \dfrac{100}{5}

\huge{\boxed{\rt{20\: \%}}}

Similar questions