Math, asked by ArushiK, 9 months ago

at what rate per cent compound intrest,does a sum of money become 1.44 times of itself in 2 years

pls pls pls answer very urgent ​

Answers

Answered by TheVenomGirl
19

GiVen:

Sum of the money compounded per year becomes 1.44 times of itself in 2 years.

AnSwer:

According to the question,

  : \implies \sf \:  \:  \: S = P  { (\frac{ {1 + r} }{100})}^{2} \\ \\  : \implies \sf \:  \:  \: 1.44P = P{ (\frac{ {1 + r} }{100})}^{2} \\ \\  : \implies \sf \:  \:  \: 1+ \frac{r}{100}   =  \sqrt{1.44}  \\  \\  : \implies \sf \:  \:  \:100+ \frac{r}{100}  = 1.2 \\ \\  : \implies \sf \:  \:  \: 100+r = 1.2 \times 100 \\  \\  : \implies \sf \:  \:  \:100+r = 120 \\ \\  : \implies \sf \:  \:  \: r = 120-100 \\  \\ : \implies \sf \:  \:  \:{ \underline{ \boxed{ \sf { \purple{  \: r = 20\% \: }}}}} \: \bigstar

Hence, rate is 20%.

Answered by SarcasticL0ve
9

20%

Given:-

  • sum of money compunded per year become 1.44 times of itself in 2 years.

To find:-

  • Rate percent

Solution:-

Step-by-step explanation:

:\implies\bf S = P \bigg( \dfrac{1 + r}{100} \bigg)^2 \\ \\ \dashrightarrow\sf 1.44 \cancel{P} = \cancel{P} \bigg( \dfrac{1 + r}{100} \bigg)^2

\;\;\star\;\sf {\underline{Taking\;sqrt.\;both\;side}}

\dashrightarrow\sf \sqrt{1.44} = \sqrt{ \bigg( \dfrac{1 + r}{100} \bigg)^2} \\ \\ \dashrightarrow\sf 1.2 = \dfrac{100 + r}{100} \\ \\ \dashrightarrow\sf 1.2 \times 100 = 100 + r \\ \\ \dashrightarrow\sf 120 = 100 + r \\ \\ \dashrightarrow\sf 120 - 100 = r \\ \\ \dashrightarrow\bf {\underline{\underline{\boxed{\red{20}}}}}\bigstar

★ Hence, rate percent is 20%.

\rule{150}{4}

Similar questions