Math, asked by shardulsawant666, 2 months ago

at what rate per cent will a sum of ₹18750 amount to ₹21870 in 2 years compounded annually?​

Answers

Answered by SachinGupta01
31

 \bf \underline{Given} :

 \sf \implies Principal = Rs. \:  18750

\sf \implies Amount = Rs. \:  21870

\sf \implies Time = 2 \:  years

 \bf \underline{To  \: find} :

\sf \implies Rate  \: of  \: interest

 \bf \underline{\underline{Solution }}

 \sf As  \: we  \: know  \: that,

 \sf \implies\boxed{ \pink{ \sf  Amount = P \bigg(1+  \dfrac{R}{100} \bigg)^{n}}}

 \sf Putting \:  the \:  values,

 \sf \implies \sf  21870 = 18750 \bigg(1+  \dfrac{R}{100} \bigg)^{2}

 \sf \implies   \cancel\dfrac{21870}{18750}  =  \bigg(1+  \dfrac{R}{100} \bigg)^{2}

 \sf \implies   \dfrac{729}{625}  =  \bigg(1+  \dfrac{R}{100} \bigg)^{2}

 \sf \implies   \sqrt{ \dfrac{729}{625} }   =1+  \dfrac{R}{100}

 \sf \implies   \dfrac{27 \times 27}{25 \times 25}  =  1+  \dfrac{R}{100}

 \sf \implies   \dfrac{27}{25}  =  1+  \dfrac{R}{100}

 \sf \implies   \dfrac{27}{25}   -  1 =  \dfrac{R}{100}

 \sf \implies   \dfrac{27 - 25}{25}    =  \dfrac{R}{100}

 \sf \implies   \dfrac{2}{\!\!\!\not2\!\!\!\not5}    =  \dfrac{R}{\!\!\!\not1\!\!\!\not0\!\!\!\not0}

 \sf \implies   2  =   \dfrac{R }{4}

 \sf \implies   2  \times 4 = R

 \sf \implies   8 = R

 \underline{ \boxed{ \sf \pink{ Hence, rate  \: of \:  interest = 8 \:  \% }}}

Similar questions