Math, asked by kotgiregeeta5525, 11 months ago

At what rate percent annum will rs 3000 amount to rs3993 in 3 years, the interest being compounded annualy.

Answers

Answered by BrainlyConqueror0901
79

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Rate\%=10\%}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven :}} \\  \tt:  \implies Principal(p) = 3000 \: rupees \\  \\ \tt:  \implies Amount(A) =3993 \: rupees \\  \\ \tt:  \implies Time(t) =3 \: years \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Rate\%(r) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{r}{100})^{t}  \\  \\ \tt:  \implies 3993 = 3000 \times (1 +  \frac{r}{100} )^{3}  \\  \\ \tt:  \implies 3993 = 3000 \times ( \frac{100 + r}{100} )^{3}  \\  \\ \tt:  \implies  \frac{3993}{3000}  =  (\frac{100 + r}{100}) ^{3}  \\  \\ \tt:  \implies 1.331 = ( \frac{100 + r}{100})^{3}   \\  \\ \tt:  \implies ( {1.1})^{3}  = ( \frac{100 + r}{100} )^{3}  \\  \\ \tt:  \implies 1.1 =  \frac{100 + r}{100}  \\  \\ \tt:  \implies 1.1 \times 100 = 100 + r \\  \\ \tt:  \implies r = 110 - 100 \\  \\  \green{\tt:  \implies r = 10\%}

Answered by AdorableMe
127

Given :-

At what rate percent annum will ₹ 3000 amount to ₹ 3993 in 3 years, the interest being compounded annually.

• Principal (P) = ₹ 3000

• Amount(A) = ₹ 3993

• Time(n) = 3 years

To find :-

The rate(r) %

Solution :-

We know,

\tt{A=P(1+\frac{r}{100})^n }\\\\\tt{\implies 3993=3000(1+\frac{r}{100})^3 }\\\\\tt{\implies \frac{3993}{3000}=(1+\frac{r}{100})^3  }\\\\\tt{\implies \frac{1331}{1000}=(\frac{100+r}{100} )^3 }\\\\\tt{\implies (\frac{11}{10} )^3=(\frac{100+r}{100} )^3}\\\\\tt{\implies \frac{11}{10}=\frac{100+r}{100}  }\\\\\tt{\implies 11=\frac{100+r}{10} }\\\\\\\sf{By\ cross\ multiplying:}\\\\\tt{\implies 110=100+r}\\\\\tt{\implies r=110-100}\\\\\tt{\boxed{r=10\%}}

∴ So, the rate is 10 %.

Similar questions