Math, asked by vshal4167, 1 year ago

At what rate percent compound interest per annum will ₹ 16000 amount to ₹22781.25 in 3 years.

Answers

Answered by FuturePoet
4

Here your answer goes

Step :- 1

Given ,

Principal (P)  = 16000

Amount (A)   = Rs.22781.25

Time (T)  = 3 years

Rate (R)  = r

Step :- 2

Use:-

A = P(1 + \frac{r}{100} )^t

Put the values :-

22781.25 = 16000 (1 + \frac{r}{100} )^3

\frac{22781.25}{16000} = (1 + \frac{r}{100} )^3

\frac{2278125}{1600000} = (1 +\frac{r}{100} )^3

\frac{729}{512} = (1 + \frac{r}{100} )^3

\sqrt[3]{\frac{729}{512} } = 1 + \frac{r}{100}

\frac{9}{8} - 1 = \frac{r}{100}

\frac{1}{8} * 100 = r

⇒ 12.5% = r

Therefore , the rate percent is 12.5%






Attachments:

FuturePoet: Hope it is helpful to you !
Answered by Mrpagal99
1

12%

Step-by-step explanation:

Step :- 1

Given ,

Principal (P) = 16000

Amount (A) = Rs.22781.25

Time (T) = 3 years

Rate (R) = r

Step :- 2

Use:-

A = P(1 + \frac{r}{100} )^tA=P(1+

100

r

)

t

Put the values :-

22781.25 = 16000 (1 + \frac{r}{100} )^322781.25=16000(1+

100

r

)

3

⇒ \frac{22781.25}{16000} = (1 + \frac{r}{100} )^3

16000

22781.25

=(1+

100

r

)

3

⇒ \frac{2278125}{1600000} = (1 +\frac{r}{100} )^3

1600000

2278125

=(1+

100

r

)

3

⇒ \frac{729}{512} = (1 + \frac{r}{100} )^3

512

729

=(1+

100

r

)

3

⇒ \sqrt[3]{\frac{729}{512} }

3

512

729

= 1 + \frac{r}{100}1+

100

r

⇒ \frac{9}{8} - 1 = \frac{r}{100}

8

9

−1=

100

r

⇒ \frac{1}{8} * 100 = r

8

1

∗100=r

⇒ 12.5% = r

Therefore , the rate percent is 12.5%

Similar questions