Math, asked by abhasingh6077, 7 months ago

at what rate percent per annum will 64 amount to 125 in 3 years a compound interest, interst being compounded annually​

Answers

Answered by Anonymous
9

use formual amount= p(1+r/100)^n

p =principal

n=no of years

r=rate of interest

125=64(1+r/100)^3r=25

Amount = P(1+r/100)^n where r is annual rate of interst in percent.125 = 64(1+r/100)^3125/64

=(1+r100)^3(1+r100)=5/4100+r=125r=125-100=25

so rate of interest = 25%

Answered by prince5132
18

GIVEN :-

  • Principal ( P ) = Rs. 64
  • Amount ( A ) = Rs. 125
  • Time ( T ) = 3 years.

TO FIND :-

  • The rate ( R ).

SOLUTION :-

As we know that,

 \\ :   \implies \displaystyle \sf \: A = P\bigg(1 + \dfrac{R}{100}\bigg)^{n} \\  \\  \\

\\   : \implies \displaystyle \sf \:  \dfrac{A}{P} = \bigg(1 + \dfrac{R}{100}\bigg)^{n} \\  \\

Now substitute the given values,

 \\  \\ : \implies \displaystyle \sf \:  \dfrac{125}{64} = \bigg(1 + \dfrac{R}{100}\bigg)^{3} \\  \\   \\

: \implies \displaystyle \sf \:  \bigg( \dfrac{5}{4} \bigg) ^{3}  = \bigg(1 + \dfrac{R}{100}\bigg)^{3} \\  \\

On comparing both the sides we get,

 \\  \\ : \implies \displaystyle \sf \:  \dfrac{5}{4} = 1 + \dfrac{R}{100} \\  \\   \\

: \implies \displaystyle \sf \:  \dfrac{5}{4}  - 1=  \dfrac{R}{100} \\  \\   \\

: \implies \displaystyle \sf \:  \dfrac{5 - 4}{4}  =  \dfrac{R}{100} \\   \\  \\

: \implies \displaystyle \sf \:  \dfrac{1}{4}  =  \dfrac{R}{100} \\   \\  \\

: \implies \displaystyle \sf \:  \dfrac{1}{4} \times 100  =  R \\  \\  \\

: \implies \underline{ \boxed{ \displaystyle \sf  \:   Rate = 25\%}}


spacelover123: Great ^_^
prince5132: Thanks (。◕‿◕。)
Similar questions