Math, asked by yarasinikitha, 1 year ago

At what rate percent per annum will rupee 6000 amount s to
6615 in 2 years when interest is compounded annually

Answers

Answered by ItzMayu
14

Answer:

{\sf{\red{\underline{\underline{\huge{Answer:}}}}}}

Given:

  • ⇒ Principal amount (P) = Rs 6000
  • ⇒ Total amount (A) = Rs 6615
  • ⇒ Time (n) = 2 years

To Find:

  • ⇒ We need to find the rate of interest.

Solution:

As it is given that the principle amount is Rs 6000, time is 2 years and Total amount is Rs 6615.

We can find the rate of interest by this formula:

A = P[1 + r/100]^n

Substituting the given values, we have

6615 = 6000[1 + r/100]^2

➤ 6615/6000 = (1 + r/100)^2

➤ 1.1025 = (1 + r/100)^2

➤ √1.1025 = (1 + r/100)

➤ 1.05 = (1 + r/100)

➤ 0.05 = r/100

➤ r = 5%

  • Therefore, the rate of interest at which Rs 6000 will amount to Rs 6615 in 2 years is 5%.
Answered by Anonymous
40

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➽ Principle = Rs.6000
  • ➽ Amount = Rs.6615
  • ➽ Time = 2 years

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➽ Rate of Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using Formula :}}}}}}\end{gathered}

 \bigstar{\underline{\boxed{\rm{\purple{A = P\left(1 + \dfrac{R}{100} \right)^{n}}}}}}

Where

  • ➽ A = Amount
  • ➽ P = Principle
  • ➽ R = Rate of Interest
  • ➽ N = Time

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

\red\bigstar Here

  • ➽ Amount = Rs.6615
  • ➽ Principle = Rs.6000
  • ➽ Time = 2 years
  • ➽ Rate of Interest = ?

\begin{gathered}\end{gathered}

\red\bigstar Calculating the Rate of Interest,

\quad{:\implies{\rm{A = P\left(1 + \dfrac{R}{100} \right)^{n}}}}

  • Substuting the values

\quad{:\implies{\rm{6615 = 6000\left(1 + \dfrac{R}{100} \right)^{2}}}}

\quad{:\implies{\rm{\dfrac{6615}{6000}  =\left(1 + \dfrac{R}{100} \right)^{2}}}}

\quad{:\implies{\rm{\cancel{\dfrac{6615}{6000}}  =\left(1 + \dfrac{R}{100} \right)^{2}}}}

\quad{:\implies{\rm{\dfrac{441}{400}  =\left(1 + \dfrac{R}{100} \right)^{2}}}}

\quad{:\implies{\rm{\cancel{\dfrac{441}{400}}  =\left( \dfrac{(1 \times 100) + R}{100} \right)^{2}}}}

\quad{:\implies{\rm{1.1025=\left( \dfrac{ 100+ R}{100} \right)^{2}}}}

\quad{:\implies{\rm{ \sqrt{1.1025} =\left( \dfrac{ 100+ R}{100} \right)}}}

\quad{:\implies{\rm{1.05 =\left( \dfrac{ 100+ R}{100} \right)}}}

\quad{:\implies{\rm{1.05 \times 100 =({ 100+ R})}}}

\quad{:\implies{\rm{105=({ 100+ R})}}}

\quad{:\implies{\rm{105 - 100 =  R}}}

\quad{:\implies{\rm{5 \% =  R}}}

\quad\bigstar{\underline{\boxed{\rm{\purple{Rate = 5 \%}}}}}

The Rate of Interest is 5%

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

\quad\bigstar{\underline{\boxed{\rm{\red{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{Amount = Principle + Interest}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{ P=Amount - Interest }}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{Rate =  \dfrac{Simple \:  Interest  \times 100}{Principle  \times Time}}}}}}

\quad\bigstar{\underline{\boxed{\rm{\red{ Time=  \dfrac{Simple \:  Interest  \times 100}{Principle  \times Rate}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions