Math, asked by itzhotgirl2408, 8 months ago

At what rate percent will 2000rs amount to 2315.25rs in 3 years at compound interest?
no spamming
plz ans. fast.​

Answers

Answered by TheProphet
4

S O L U T I O N :

\underline{\bf{Given\::}}

  • Principal, (P) = Rs.2000
  • Amount, (A) = Rs.2315.25
  • Time, (n) = 3 years .

\underline{\bf{Explanation\::}}

Using formula of the compounded annually;

\boxed{\bf{Amount = Principal\bigg(1+\frac{R}{100} \bigg)^{n}}}

A/q

\mapsto\tt{2315.25 =2000\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{2315.25}{2000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{2315.25 \times 100}{2000\times 100} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{231525}{200000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\cancel{\dfrac{231525}{200000}} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\cancel{\dfrac{46305}{40000}} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{9261}{8000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{3\sqrt{\dfrac{9261}{8000} }=1+\dfrac{R}{100} }

\mapsto\tt{\dfrac{21}{20} =1+\dfrac{R}{100} }

\mapsto\tt{\dfrac{21}{20}-1 =\dfrac{R}{100} }

\mapsto\tt{\dfrac{21-20}{20} =\dfrac{R}{100} }

\mapsto\tt{\dfrac{1}{20} =\dfrac{R}{100} }

\mapsto\tt{20R= 100\:\:\underbrace{\sf{cross-multiplication}}}

\mapsto\tt{R = \cancel{100/20}}

\mapsto\bf{R = 5\:\%}

Thus,

The rate of the compound Interest will be 5% .

Answered by cadetshiva
1

Answer:

hlo

.......................

Similar questions