Math, asked by Daniel040099, 18 days ago

At what rate percent will a sum of ₹ 8,400 yield ₹ 861 as compound interest in 2 years?

Answers

Answered by TheAestheticBoy
4

Given :-

  • Principal = 8,400 .
  • lnterest = ₹ 861 .
  • Time = 2 years .

⠀⠀⠀⠀⠀⠀⠀

To Find :-

  • Rate of Interest = ?

⠀⠀⠀⠀⠀⠀⠀

Solution :-

⠀⠀⠀⠀⠀⠀⠀

First, we will calculate the Amount, and then Rate of Interest .

⠀⠀⠀⠀⠀⠀⠀

  • Now, let's calculate Amount -----

⠀⠀⠀⠀⠀⠀⠀

⠀⠀\maltese \:  \sf \red{Amount = Principal + Interest} \\  \\    : \dashrightarrow \:  \sf{A =8400  +  861 } \\  \\   : \dashrightarrow \:  \sf  \pink{A= 9261}

⠀⠀⠀⠀⠀⠀⠀

  • Now, we will calculate the Rate of Interest -----

⠀⠀⠀⠀⠀⠀⠀

\maltese \:  \sf \red{Amount = Principal  \: ( \:  Interest × Rate \:  )  {}^{n} } \\  \\  : \dashrightarrow \:  \sf{9261 = 8400 \: ( \:1 \times \: R \:   ) {}^{2} } \\  \\   : \dashrightarrow \:  \sf{ \frac{9261}{8400}  =  \: ( \: 1\times R \: ) {}^{2} } \\  \\  : \dashrightarrow \:  \sf{1.1025 = ( \: 1 \times \: R  \: )  {}^{2} } \\  \\: \dashrightarrow \:  \sf{ \sqrt{1.1025 }  = ( \: 1 \times \: R \: ) } \\  \\    : \dashrightarrow \:  \sf{1.05 = 1\times R} \\  \\ :\dashrightarrow \: \sf{R = 1.05 - 1} \\ \\  : \dashrightarrow \:  \sf \pink{R = 0.05}

⠀⠀⠀⠀⠀⠀⠀

Hence :-

  • Rate of Interest = 0.05 × 100 = 5 %

_____________________

\large\sf\colorbox{pink}{Hope lt'z Help You\:\:!! }

Similar questions