Math, asked by anuradhass2008, 3 months ago

At what rate present per annum, the simple interest on₹3,650 will be₹1,314 after 3years?​

Answers

Answered by IntrovertLeo
10

Given:

  • Principal = Rs. 3650
  • Simple Interest = Rs. 1314
  • Time = years

What To Find:

We have to find the rate per annum.

Formula Needed:

\bf SI = \dfrac{P \times R \times T}{100}

Abbreviations Used:

  • SI = Simple Interest
  • P = Principal
  • T = Time
  • R = Rate

Solution:

Using the formula,

\sf \implies SI = \dfrac{P \times R \times T}{100}

Substitute the values,

\sf \implies 1314 = \dfrac{3650 \times R \times 3}{100}

Multiply the numerator,

\sf \implies 1314 = \dfrac{10950 \times R}{100}

Cancel the zeros,

\sf \implies 1314 = \dfrac{1095 \times R}{10}

Take 10 to LHS,

\sf \implies 1314 \times 10 = 1095 \times R

Multiply the LHS,

\sf \implies 13140 = 1095 \times R

Take 1095 to LHS,

\sf \implies \dfrac{13140}{1095} = R

Divide 13140 by 1095,

\sf \implies 12 \: \% = R

Final Answer:

Therefore, the rate present per annum is 12 %.

Answered by CuteAnswerer
3

GIVEN :

  • Simple Interest (SI) = Rs 1314

  • Principal (P) = Rs 3650

  • Time (T) = 3 years

TO FIND :

  • Rate (R).

FORMULA REQUIRED :

  • \bigstar{\underline { \boxed{ \red{ \bf{R = \bigg(\dfrac{SI\times 100}{P \times T} \bigg)\%}}}}}

SOLUTION :

Substituting the given values :

\implies {\sf{R=  \bigg(\dfrac{SI \times 100}{P\times T} \bigg)\% }} \\ \\

\implies {\sf{R =  \bigg(\dfrac{ \cancel{1314} \times \cancel{ 100}} { \cancel{3650} \times \cancel{ 3} } \bigg)\%}}\\ \\

\implies {\sf{R =  \bigg( 6\times 2 \bigg)\%}}\\ \\

\implies \underline{ \red{ \boxed{\bf{ R=12\%}}}}

\huge{\pink{\therefore}}Rate= 12%.

Similar questions