Math, asked by swalke378, 1 year ago

At what rate the compound interest compounded annually will Rs 7500 becomes Rs 9075 in 2 years

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\textsf{Principal=Rs.7500}

\textsf{Amount=Rs.9075}

\textsf{Number of years= 2 years}

\underline{\textbf{To find:}}

\textsf{Rate of interest}

\underline{\textbf{Solution:}}

\underline{\textbf{Compound interest formula:}}

\boxed{\mathsf{Amount=P\left(1+\dfrac{r}{100}\right)^n}}

\implies\mathsf{9075=P\left(1+\dfrac{r}{100}\right)^n}

\implies\mathsf{9075=7500\left(1+\dfrac{r}{100}\right)^2}

\implies\mathsf{\dfrac{9075}{7500}=\left(1+\dfrac{r}{100}\right)^2}

\implies\mathsf{\dfrac{363}{300}=\left(1+\dfrac{r}{100}\right)^2}

\implies\mathsf{\dfrac{121}{100}=\left(1+\dfrac{r}{100}\right)^2}

\implies\mathsf{\sqrt{\dfrac{121}{100}}=1+\dfrac{r}{100}}

\implies\mathsf{\dfrac{11}{10}=1+\dfrac{r}{100}}

\implies\mathsf{\dfrac{11}{10}-1=\dfrac{r}{100}}

\implies\mathsf{\dfrac{1}{10}=\dfrac{r}{100}}

\implies\mathsf{r=\dfrac{100}{10}}

\implies\boxed{\mathsf{r=10\,\%}}

Answered by vanshbhikari9
0

Answer:

r=10%

Step-by-step explanation:

because it is a very hot question

Similar questions