Chemistry, asked by priyanshuatghra01, 3 months ago

At what temperature k1 = K2​

Attachments:

Answers

Answered by allysia
0

Answer:

Since you need to know at least  one temperature at the following reaction takes place,

I have derived the relation between them here:

\\\tt \dfrac{ {2} }{T_{2} } - \dfrac{ 1 }{T_{1}} = \dfrac{R}{2.303 \times 10^{4}}

Explanation:

Using Arrhenius equation:

\\\tt k=Ae^{{\dfrac  {-E_{a}}{RT}}}

\\\tt log k = log A - \dfrac{2.303 \ E_{a}}{RT}

Using values for \\\tt k_{1}

\\\tt k_{1} =  log (10^{14}) - \dfrac{2.303 \times 10^{4} }{RT_{1}}

and

\\\tt k_{2} =  log (10^{15}) - \dfrac{2.303 \times 20^{4} }{RT_{2}}

For them to be equal:

\\\tt  log (10^{14}) - \dfrac{2.303 \times 10^{4} }{RT_{1}} =  log (10^{15}) - \dfrac{2.303 \times 20^{4} }{RT_{2}}

\\\tt  \implies 14 - \dfrac{2.303 \times 10^{4} }{RT_{1}} = 15 - \dfrac{2.303 \times 20^{4} }{RT_{2}}

\\\tt  -1=  \dfrac{2.303 \times 10^{4} }{RT_{1}}  - \dfrac{2.303 \times 20^{4} }{RT_{2}}\\-1= \dfrac{2.303  }{R} \times [  \dfrac{ 10^{4} }{T_{1} } - \dfrac{ 20^{4} }{T_{2}}   ]\\

\\\tt -1= \dfrac{2.303  }{R} \times [  \dfrac{ 10^{4} }{T_{1} } - \dfrac{ 20^{4} }{T_{2}}   ] \\\\\tt \dfrac{ {2} }{T_{2} } - \dfrac{ 1 }{T_{1}} = \dfrac{R}{2.303 \times 10^{4}}

Similar questions