Chemistry, asked by nonononono, 4 months ago

At what temperature will 41.6 g of N2(g) exert a pressure of 108.6 kPa in a 20.0L cylinder?

Question 7 options:

134 K


176 K


238 K


337 K

Answers

Answered by s02371joshuaprince47
0

Answer:

238 K

mark me as brainliest..

Answered by brokendreams
0

Step by step explanation:

Given :  41.6 g of N_2(g) exert a pressure of 108.6 kPa in a 20.0L cylinder.

To find : The temperature of cylinder.

Formula used : We use Ideal gas equation to find the temperature

PV=nRT

P is the pressure, V is the volume, n is the no. of moles, R is the universal gas constant and T is the temperature.

and to find temperature(T),

T=\frac{PV}{nR}

No. of moles(n) for any compound 'a' are,

n_a=\frac{W_a}{MM_a}

W is the given mass and MM is the molar mass of compound 'a'.

Given data :

P=108.6kPa

V=20.0L

Mass of N_2(g) = 41.6g

  • Required conversion units

Pressure : 1kPa=1000Pa

                 1Pa=\frac{1}{101325} atm

  • Required data for calculation of temperature

⇒  P=108.6kPa

        =108.6*1000Pa

        =\frac{108.6*1000}{101325} atm

        =1.072atm

⇒  V=20.0L

Mass of N_2(g) = 41.6g

Molar mass of N_2(g) =28g/mol

by using formula the no. of moles are,

n_a=\frac{W_a}{MM_a}

⇒  n=\frac{41.6g}{28g/mol}

        =1.486mol

⇒  R=0.0821atmLK^{-1}mol^{-1}

  • Calculation for Temperature,

Now we have all required data in required units,

P=1.072atm  ,  V=20.0L  ,  n=1.486mol   and R=0.0821atmLK^{-1}mol^{-1}

by using Ideal gas equation,

⇒  T=\frac{PV}{nR}

        =\frac{1.072atm*20.0L}{1.486mol*0.0821atmLK^{-1}mol^{-1}}

        =\frac{21.44}{0.122K^{-1}}

        =175.73K

        \approx 176K

Hence we get the temperature of cylinder containing N_2(g) is  (b) 176K .

Similar questions