Math, asked by questionbabaji79, 1 year ago

@@@@@@@@@@@@@@@@@@@@@@@@@@@

SEE THE ATTACHMENT FOR THE QUESTION AND STEP BY STEP ANSWER NEEDED

Attachments:

Answers

Answered by Sauron
70

\textbf{\underline{\underline{Question :- }}}

Add the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6

\textbf{\underline{\underline{Answer :-}}}

12x² - 9x + 15

\textbf{\underline{\underline{Explanation :-}}}

\starSum of 4x² - 3x - 5 and 3x² + 5x + 6

\tt{\Rightarrow} 4x² - 3x - 5 + (3x² + 5x + 6)

\tt{\Rightarrow} 4x² + 3x² - 3x + 5x - 5 + 6

\tt{\Rightarrow} 7x² + 2x + 1

\boxed{\sf{7 {x}^{2}  + 2x + 1 }}

\starSum of 2x² - 6x + 8 and 3x² - 5x + 6

\tt{\Rightarrow} 2x² - 6x + 8 + (3x² - 5x + 6)

\tt{\Rightarrow} 2x² + 3x² - 6x - 5x + 8 + 6

\tt{\Rightarrow} 5x² - 11x + 14

\boxed{\sf{5 {x}^{2} - 11x + 14}}

\starThe sum of 7x² + 2x + 1 and 5x² - 11x + 14

\tt{\Rightarrow} 7x² + 2x + 1 + (5x² - 11x + 14)

\tt{\Rightarrow} 7x² + 5x² + 2x - 11x + 1 + 14

\tt{\Rightarrow} 12x² - 9x + 15

\boxed{\boxed{\sf{\red{12 {x}^{2} - 9x + 15 }}}}

\therefore The addition of the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6 is 12x² - 9x + 15 .


UltimateMasTerMind: Nice!☺
Sauron: Thanks MJ and Mastermind ❤️
Anonymous: :)
Anonymous: Awesome keep it up :)
UltimateMasTerMind: ☺☺
Sauron: :)
impushpa10: Nice
Anonymous: Perfect answer :)
Sauron: Thankies Kristy ❤️
Answered by Anonymous
57

Question :

Add the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6

Answer:

( 4 x² - 3 x - 5 ) + ( 3 x² + 5 x + 6 )

⇒ 4 x² + 3 x² - 3 x + 5 x - 5 + 6

⇒ 7 x² + 2 x + 1 -------(1)

( 2 x² - 6 x + 8 ) + (3 x² - 5 x + 6 )

⇒ 2 x² + 3 x² - 6 x - 5 x + 8 + 6

⇒ 5 x² - 11 x + 14 ------(2)

Adding 1 and 2 we get :

⇒ 7 x² + 2 x + 1 + 5 x² - 11 x + 14

⇒ 12 x² - 9 x + 15

The resultant equation is 12 x² - 9 x + 15 .

Step-by-step explanation:

A polynomial is an expression of the form ax^n+bx^{n-1}+... .

Here n has to be non-zero . n cannot be zero.

We will first group the like terms so that we can easily add the given polynomial .

Then we can add by taking common which we may or may not show in our steps .

For example :

Take any integer a , b :

ax^2+bx^2\\\\\rightarrow x^2(a+b)

This called taking common and it helps in adding unknown variables and two or more polynomials .


Anonymous: claps;
UltimateMasTerMind: Nice!☺
Anonymous: Awesome explanation keep it up :)
aryaanchal: hii
impushpa10: nice
Anonymous: Perfect answer :)
Similar questions