@@@@@@@@@@@@@@@@@@@@@@@@@@@
SEE THE ATTACHMENT FOR THE QUESTION AND STEP BY STEP ANSWER NEEDED
Answers
Add the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6
12x² - 9x + 15
Sum of 4x² - 3x - 5 and 3x² + 5x + 6
4x² - 3x - 5 + (3x² + 5x + 6)
4x² + 3x² - 3x + 5x - 5 + 6
7x² + 2x + 1
Sum of 2x² - 6x + 8 and 3x² - 5x + 6
2x² - 6x + 8 + (3x² - 5x + 6)
2x² + 3x² - 6x - 5x + 8 + 6
5x² - 11x + 14
The sum of 7x² + 2x + 1 and 5x² - 11x + 14
7x² + 2x + 1 + (5x² - 11x + 14)
7x² + 5x² + 2x - 11x + 1 + 14
12x² - 9x + 15
The addition of the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6 is 12x² - 9x + 15 .
Question :
Add the sum of 4x² - 3x - 5 and 3x² + 5x+6 to the sum of 2x² - 6x + 8 and 3x² - 5x + 6
Answer:
( 4 x² - 3 x - 5 ) + ( 3 x² + 5 x + 6 )
⇒ 4 x² + 3 x² - 3 x + 5 x - 5 + 6
⇒ 7 x² + 2 x + 1 -------(1)
( 2 x² - 6 x + 8 ) + (3 x² - 5 x + 6 )
⇒ 2 x² + 3 x² - 6 x - 5 x + 8 + 6
⇒ 5 x² - 11 x + 14 ------(2)
Adding 1 and 2 we get :
⇒ 7 x² + 2 x + 1 + 5 x² - 11 x + 14
⇒ 12 x² - 9 x + 15
The resultant equation is 12 x² - 9 x + 15 .
Step-by-step explanation:
A polynomial is an expression of the form .
Here n has to be non-zero . n cannot be zero.
We will first group the like terms so that we can easily add the given polynomial .
Then we can add by taking common which we may or may not show in our steps .
For example :
Take any integer a , b :
This called taking common and it helps in adding unknown variables and two or more polynomials .