@Best Users
Kinda Easy Question
Or
Answers
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Put value of x!
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Answer:
Solution:-
The sequence has a common difference of 8, and the first term 4.
The formula for series of an arithmetic progression is,
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}=\dfrac{n\{2a+(n-1)d\}}{2}↪k=1∑nak=2n{2a+(n−1)d}
where aa is the first term, dd is the common difference, and nn is the term number.
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}=\dfrac{n\{8+8(n-1)\}}{2}↪k=1∑nak=2n{8+8(n−1)}
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}=4n^{2}↪k=1∑nak=4n2
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}=(2n)^{2}↪k=1∑nak=(2n)2
So, the sum of the sequence is always a perfect square.
\large\text{\underline{Maths activity:-}}Maths activity:-
Also, we can make another perfect square sum.
Since,
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}-\sum^{n-1}_{k=1}a_{k}=a_{n}\ (n\geq2)\text{ and }\sum^{1}_{k=1}a_{k}=a_{1}↪k=1∑nak−k=1∑n−1ak=an (n≥2) and k=1∑1ak=a1
Put a perfect square in terms of nn . We get,
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}=(kn)^{2}↪k=1∑nak=(kn)2
Then,
\hookrightarrow\displaystyle\sum^{n}_{k=1}a_{k}-\sum^{n-1}_{k=1}a_{k}=(kn)^{2}-\{k(n-1)\}^{2}↪k=1∑nak−k=1∑n−1ak=(kn)2−{k(n−1)}2
\hookrightarrow\displaystyle a_{n}=(kn)^{2}-\{k(n-1)\}^{2}\ (\text{for }n\geq2)↪an=(kn)2−{k(n−1)}2 (for n≥2)
\hookrightarrow a_{n}=k^{2}(n^{2}-n^{2}+2n-1)\ (\text{for }n\geq2)↪an=k2(n2−n2+2n−1) (for n≥2)
\hookrightarrow a_{n}=k^{2}(2n-1)\ (\text{for }n\geq2)↪an=k2(2n−1) (for n≥2)
a_{1}a1 follows the sequence.
\hookrightarrow a_{1}=k^{2}↪a1=k2
Choosing k=1k=1 we get,
\hookrightarrow a_{n}=2n-1\implies 1+3+5+7+\cdots+(2n-1)=n^{2}↪an=2n−1⟹1+3+5+7+⋯+(2n−1)=n2
Now, we found that adding the first n terms of odd numbers obtain n^{2}n2 . This also proves that the sum of the given sequence 4, 12, 20, …, 8n-4 obtain (2n)², it is a case where k=2k=2 .