Math, asked by papakafighterplane, 2 months ago

@Brainly Stars!!
@ Moderators!!
@ Brainly Users!!

Maths Chapter 13:- Surface Area and Volume..

☛A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter l of the hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.​

☞If you dont Know the answer then plz dont spam here and stay away from my question if you are a Spammers...

☛No Websites!!!otherwise Reported!!!

☛ Time Limit:- 15 min.

All the Best :)​

Answers

Answered by Itzheartcracer
10

Given :-

A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter l of the hemisphere is equal to the edge of the cube.

To Find :-

Surface Area of remaining solid

Solution :-

Given,

Diameter is l

So,

Radius = Diameter/2

Radius = l/2

                                                                                 

Surface Area of cube = 6(edge)²

SA of cube = 6(l)²

SA of cube = 6l²

                                                                                 

CSA of hemisphere = 2πr²

CSA of hemisphere = 2 × π × (l/2)²

CSA of hemisphere = 2 × π × l²/4

CSA of hemisphere = πl²/2

                                                                                 

Area of base = πr²

Area of base = π × (l/2)²

Area of base = π × l²/4

Area of base = πl²/4

                                                                                 

Now

Surface Area of soild = Surface area of cube + CSA of hemisphere - Area of base of hemisphere

Surface Area of soild = 6l² + πl²/2 - πl²/4

Surface Area of soild = 6l² + 2πl² - πl²/4

Surface Area of soild = 6l² + πl²/4

  • Taking l² as common

Surface Area of soild = l²(6 + π/4)

Surface Area of soild = l²(24 + π/4)

Surface Area of soild = 1/4 × l² (π + 24)

Surface Area of soild = l²/4(π + 24)

[tex][/tex]

Answered by Anonymous
137

{\__/}

(• ◡ • )

/<❤>✨ANSWER☃️✨

ʟᴇᴛ, ʟᴇɴɢᴛʜ ᴏғ ᴇᴀᴄʜ ᴇᴅɢᴇ ᴏғ ᴄᴜʙɪᴄᴀʟ ʙʟᴏᴄᴋ

= ᴅɪᴀᴍᴇᴛᴇʀ ᴏғ ʜᴇᴍɪsᴘʜᴇʀᴇ = ʟ

∴ ʀᴀᴅɪᴜs ᴏғ ʜᴇᴍɪsᴘʜᴇʀᴇ,

r =  \frac{1}{2} unit

ᴛᴏᴛᴀʟ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ᴏғ ɴᴇᴡʟʏ ғᴏʀᴍᴇᴅ ᴄᴜʙᴇ

= ᴄᴜʀᴠᴇᴅ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ᴏғ ᴄᴜʙᴇ – ᴜᴘᴘᴇʀ ᴘᴀʀᴛ ᴏғ ᴄᴜʙᴇ + ᴀʀᴇᴀ ᴏғ ʜᴇᴍɪsᴘʜᴇʀᴇ ᴡʜɪᴄʜ ɪs ᴅᴇᴘʀᴇssᴇᴅ

➠ \: 6 {l}^{2}  - \pi  ({ \frac{l}{2} })^{2}  + 2\pi({ \frac{l}{2} })^{2}

➠ \: 6 {l}^{2}  + \pi {l}^{2}

➠ \:  \frac{1}{4} (24  \: {l}^{2}  + \pi {l}^{2}

➠ \:  \frac{1}{4}   {l}^{2} ( \: 24 \:  + \pi \: )

• ────── ✾ ────── •

ɪ ᴀᴍ ɴᴏᴛ@ ʙʀᴀɪɴʟʏ ᴜsᴇʀs!!

@ ʙʀᴀɪɴʟʏ sᴛᴀʀᴛs!!

@ ᴍᴏᴅᴇʀᴀᴛᴏʀs!!

ɪ ᴀᴍ ɢᴇɴɪᴜs✌

• ────── ✾ ────── •

ɧσ℘ε ıtร ɧεɭ℘ ყσน✰✰

─━━━━━━⊱✿⊰━━━━━

Similar questions