Math, asked by OnlyToughQuestions, 1 month ago

@Brainly Stars

@Moderators

 \huge \bold{ \gamma = \displaystyle \lim_{x \to \infty} \Bigg(\sum\limits_{k=1}^{n} \frac{1}{k} - \displaystyle \ln \: n \Bigg)}

Answers

Answered by IIMASTERII
4

\Huge\boxed{\tt\green{✠Answer}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 \pmb{\sf{\gray{According \:  to  \: the \:  Question  }}}

 \bold{ \gamma = \displaystyle \lim_{x \to \infty} \Bigg(\sum\limits_{k=1}^{n} \frac{1}{k} - \displaystyle \ln \: n \Bigg)}

\longrightarrow\bold{ \gamma = \displaystyle \lim_{x \to \infty} \bigg(1 +  \frac{1}{2}  +  \frac{1}{3}. \: . \: . \: . \frac{1}{n}   - \displaystyle \ln \: n \bigg)}

 \pmb{\sf{\gray{  Multiply \:  and \:  divide \:  'n' \:,}}} \\  \pmb{\sf{\gray{denominator  \: and \:  numerator }}}

\longrightarrow\bold{ \gamma = \displaystyle \lim_{x \to \infty} \bigg( \frac{n}{1n}  +  \frac{n}{2n} + \frac{n}{3n} ... \: ... +  \frac{n}{n^{2} }   - \displaystyle  \frac{n \: \ln \: n}{n}  \bigg)}

\pmb{\sf{\gray{By  \: taking  \: in \:  common }}}

\longrightarrow\bold{ \gamma = \displaystyle \lim_{x \to \infty} \bigg( \frac{1}{n}  \bigg( \frac{n}{1}  +  \frac{n}{2} + \frac{n}{3} ... \: ... +  \frac{n}{n }   - \displaystyle  n \: \ln \: n  \bigg)}

\tt{So,}\longrightarrow\bold{ \gamma = \displaystyle \lim_{x \to \infty} \bigg( \frac{1}{x}  \bigg(  \frac{x}{1}   +  \frac{x}{2} + \frac{x}{3} ... \: ... +  1 - \displaystyle  x\: \ln \:x\bigg)}

\pmb{\sf{\gray{Now  \: given \:  limit  \: x \longrightarrow \infty  \:  by  \: putting,}}}

  \tt{So,}  \longrightarrow\bold{ \gamma = \displaystyle \lim_{x \to \infty} \bigg( \frac{1}{ \infty }  \bigg(  \frac{ \infty }{1}   +  \frac{ \infty }{2} + \frac{ \infty }{3} ... \: ... +  1 - \displaystyle   \infty \: \ln  \:  \infty \bigg)}</p><p>

 \sf{ \longrightarrow \infty  =  \frac{1}{ \infty } \infty  =  \frac{ \infty }{ \infty }  }

 \sf{ \longrightarrow \infty  =  \frac{1}{ \infty } \infty  =  \frac{  \bcancel\infty }{  \bcancel{\infty }  }}

 \huge \boxed{ \tt{  \gamma  = 0}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Similar questions