ate:
Time:
bject : :
পৰীয় ন মনােবিজ্ঞানের জনক কে ?
Answers
Answer:
please question to pura likho
Answer:
Explanation:
EXPLANATION.
\sf \implies \: y \: = ( \tan(x) ) {}^{ \sin(x) } \: + \: (\sin(x)) {}^{ \tan(x) } ⟹y=(tan(x))
sin(x)
+(sin(x))
tan(x)
\begin{gathered}\sf \implies \:let \: y \: = u \: + v \\ \\ \sf \implies \: \frac{dy}{dx} = \frac{du}{dx} \: + \: \frac{dv}{dx} \\ \\ \sf \implies \: \: u \: = (\tan(x)) {}^{ \sin(x) } \\ \\ \sf \implies \: \: v \: =( \sin(x)) {}^{ \tan(x) } \end{gathered}
⟹lety=u+v
⟹
dx
dy
=
dx
du
+
dx
dv
⟹u=(tan(x))
sin(x)
⟹v=(sin(x))
tan(x)
\begin{gathered}\sf \implies \:u \: = (\tan(x)) {}^{ \sin(x) } \\ \\ \sf \implies \: \: taking \: log \: on \: both \: sides \: we \: get \\ \\ \sf \implies \: ln(u) = ln( \tan(x) ) {}^{ \sin(x) } \\ \\ \sf \implies \: \frac{1}{u} \frac{du}{dx} = \sin(x) ln( \tan(x) ) \end{gathered}
⟹u=(tan(x))
sin(x)
⟹takinglogonbothsidesweget
⟹ln(u)=ln(tan(x))
sin(x)
⟹
u
1
kya dekh raha hain chutiyen
dx
du
=sin(x)ln(tan(x))
\begin{gathered}\sf \implies \: \dfrac{1}{u} \dfrac{du}{dx} = \sin(x) . \dfrac{ \sec {}^{2} (x) }{ \tan(x) } \: + \: ln( \tan(x) ) \cos(x) \\ \\ \sf \implies \: \frac{du}{dx} = u \Bigg[ \sec(x) \: + \: ln( \tan(x) ) \cos(x) \Bigg] \\ \\ \sf \impliemadarchods \: \frac{du}{dx} \: = (\tan(x) ) {}^{ \sin(x) }\Bigg[ \sec(x) \: + ln( \tan(x) ) \cos(x) \Bigg]\end{gathered}
⟹
u
1
dx
du
=sin(x).
tan(x)
sec
2
(x)
+ln(tan(x))cos(x)
⟹
dx
du
=u[sec(x)+ln(tan(x))cos(x)]
⟹
dx
du
=(tan(x))
sin(x)
[sec(x)+ln(tan(x))cos(x)]
\begin{gathered} \sf \implies \: v \: =( \sin(x) ) {}^{ \tan(x) } \\ \\ \sf \implies \: taking \: log \: on \: both \: sides \: we \: get \\ \\ \sf \implies \: \frac{1}{v}. \frac{dv}{dx} = ln( \sin(x) ) {}^{ \tan(x) } \\ \\ \sf \implies \: \frac{1}{v} . \frac{dv}{dx} = \tan(x) ln( \sin(x) ) \end{gathered}
⟹v=(sin(x))
tan(x)
⟹takinglogonbothsidesweget
⟹
v
1
.
dx
dv
=ln(sin(x))
tan(x)
⟹
v
1
.
dx
dv
=tan(x)ln(sin(x))
\begin{gathered} \sf \implies \: \dfrac{1}{v}. \dfrac{dv}{dx} = \tan(x). \dfrac{ \cos(x) }{ \sin(x) } \: + \: ln( \sin(x) ) \sec {}^{2} (x) \\ \\ \sf \implies \: \frac{dv}{dx} = v \Bigg[1 \: + \: ln( \sin(x) ) \sec {}^{2} (x) \Bigg] \\ \\ \sf \implies \: \frac{dv}{dx} \: = \sin(x) {}^{ \tan(x) }\Bigg[1 \: + \: ln( \sin(x) ) \sec {}^{2} (x) \Bigg] \end{gathered}
⟹
v
1
.
dx
dv
=tan(x).
sin(x)
cos(x)
+ln(sin(x))sec
2
(x)
⟹
dx
dv
=v[1+ln(sin(x))sec
2
(x)]
⟹
dx
dv
=sin(x)
tan(x)
[1+ln(sin(x))sec
2
(x)]
\begin{gathered} \sf \implies \: y \: = u \: + v \: \\ \\ \sf \implies \: add \: the \: value \: of \: u \: and \: v \\ \\ \sf \implies \: \tan(x) {}^{ \sin(x) }\Bigg[ \sec(x) \: + \: ln( \tan(x) ) \cos(x) \Bigg] \: + \: \sin(x) {}^{ \tan(x) } \Bigg[ 1 \: + \: ln( \sin(x) ) \sec {}^{2} (x) \Bigg] \end{gathered}
⟹y=u+v
⟹addthevalueofuandv
⟹tan(x)
sin(x)
[sec(x)+ln(tan(x))cos(x)]+sin(x)
tan(x)
[1+ln(sin(x))sec
2
(x)]
Explanation:
please mark me as brainlist