Math, asked by Itzbrainlystar30, 10 days ago

@Genuisusers
@Moderators
@bestusers

In a right triangle ABC , right angled at B , if tan A = 1 . Find 2 sin a * cos a . (trigonometry)

• No Spam ​

Answers

Answered by samuguffusindha
0

Step-by-step explanation:

In △ABC, ∠ABC=90

o

∴tanA=

AB

BC

Since tanA=1 (Given)

AB

BC

=1 ∴BC=AB

Let AB=BC=k, where k is a positive number.

Now, AC

2

=AB

2

+BC

2

∴AC=

AB

2

+BC

2

=

k

2

+k

2

∴AC=k

2

∴sinA=

AC

BC

=

k

2

k

=

2

1

,cosA=

AC

AB

=

k

2

k

=

2

1

2sinAcosA=2(

2

1

)(

2

1

)=1

∴2sinAcosA=1

Answered by mcchaturvedi98933891
0

Answer:

✨✨Your answer

In right triangle ABC

Angle C=90 degree

tan A=1

To verify that

2sin Acos A=1

Solution:

tan A=1

tan A=\frac{Perpendicular\;side}{Base}=\frac{1}{1}

BC=k

AC=k

Using Pythagoras theorem

(Hypotenuse)^2=(Perpendicular)^2+(Base)^2

AB^2=AC^2+BC^2

AB^2=k^2+k^2=2k^2

AB=\sqrt{2k^2}=k\sqrt{2}

Sin A=\frac{Perpendicular\;side}{Hypotenuse}=\frac{BC}{AB}=\frac{k}{k\sqrt{2}}=\frac{1}{\sqrt{2}}

cos A=\frac{Base}{Hypotenuse}=\frac{AC}{AB}=\frac{k}{k\sqrt{2}}=\frac{1}{\sqrt{2}}

Substitute the values

2sinAcos A=2\times \frac{1}{\sqr{2}}\times \frac{1}{\sqrt{2}}

2sinA cos A=\frac{2}{(\sqrt{2})^2}=\frac{2}{2}

2sinA cos A=1

Hence, verified.

Step-by-step explanation:

Hope it will help

Similar questions