Math, asked by Anonymous, 10 months ago

athuleee help........

Attachments:

Answers

Answered by kailashmeena123rm
1

Answer:

see attachment

and mark.me as brainliest

Attachments:
Answered by Anonymous
3

Given \:  \: Question \:  \: Is \:  \:  \:  \\  \\ x \frac{dy}{dx}  + y = x \cos(x)  +  \sin(x)  \:  \:  \: find \:  \: y \:  \:  \:  \\ when \:  \: y(x) = 1 \:  \: at \:  \: x =  \frac{\pi}{2}  \\ Answer \:  \\  \\ x \frac{dy}{dx}  + y = x \cos(x)  +  \sin(x)  \\  \\ xdy + ydx = (x \cos(x)  +  \sin(x) )dx \\  \\ d(xy) = (x \cos(x)  +   \sin(x) )dx \\ becoz \:  \: d(xy) = xdy + ydx \\  \\ taking \: integral \: on \: both \: sides \\  \\ xy = int(x \cos(x)  +  \sin(x) )dx \\  \\ xy = xsin(x) - cos(x) - cos(x) + c \\  \\ xy = x \sin(x)  - 2 \cos(x)  + c \\  \\ xy(x) = x \sin(x)  - 2 \cos(x)  + c  \:  \:  \: ... \:  \: equation \: \:  \:  01\\  \\ now \: impose \: conditions \:  \: at \:  \: x =  \frac{\pi}{2}  \:  \:  \:  \: y(x) = 1 \\  \\  \frac{\pi}{2} \times  (1) =  \frac{\pi}{2}  \times 1  + c \\  \\ c = 0 \\  from \:  \:  \:equation \:  \:  \: 01 \\  \\  \\ xy = x \sin(x)  -  2\cos(x)  \\  \\ therefore \:  \: the \:  \: general \: solution \: of \: given \: differential \: equation \: is \\  \\  \\ y =  \sin(x )  - 2 \frac{ \cos(x) }{x}

Similar questions