English, asked by sarojdevi1989s, 1 month ago

@Moderators

@ Stars

@Best Users

\begin{gathered} \bf {Let \: I_n = \int { tan}^{n} \: x \: dx(n > 1)} \\ \\ \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C\end{gathered}LetIn​=∫tannxdx(n>1)IfI4​+I6​=a.tan5x+bx5+C​
Then Find Values of a & b

Answers

Answered by Anonymous
17

\huge{❥}\:{\mathtt{{\purple{\boxed{\tt{\pink{\red{A}\pink{n}\orange{s}\green{w}\blue{e}\purple{r᭄}}}}}}}}❥

We have,

ln =  \int { \tan }^{n}  \times dx \\  \: ln + ln + 2 =  \int { \tan}^{n}  \times dx +  \int { \tan}^{n}  { + }^{2}  \times dx \\  =  \int { \tan }^{n}  \times (1 +  { \tan}^{2} x)dx \\  =  \int { \tan}^{n}  \times  { \sec}^{2}  \times dx =     \frac{{ \tan}^{n}  { + }^{2}  }{n + 1}  + c \\ put \: n = 4 \: we \: get \: l4 + l6 =  \frac{  { \tan }^{2} x }{5}  + c \\ a =  \frac{1}{5} \:  and \: b = 0

Hence,this is the required answer.

Similar questions