Math, asked by BrainIyQuestioner, 2 months ago

@Moderators

@ Stars

@Best Users

 \bf {Let \:  I_n =  \int { tan}^{n} \:  x \: dx(n > 1)} \\  \\  \bf  If  \:  I_4 +  I_6 = a.  {tan}^{5}x + b {x}^{5}   + C
Then Find Values of a & b

Answers

Answered by amansharma264
267

EXPLANATION.

⇒ Iₙ = ∫tanⁿdx (n > 1).

⇒ I₄ + I₆ = a. tan⁵x + bx⁵ + c.

As we know that,

Put the value of n = 4 and n = 6 in the equation, we get.

⇒ I₄ + I₆ = ∫[tan⁴ x + tan⁶ x]dx.

⇒ I₄ + I₆ = ∫[tan⁴ x (1 + tan² x)]dx.

⇒ I₄ + I₆ = ∫[tan⁴ x . sec² x]dx.

By using substitution method in this equation, we get.

Let, we assume that,

⇒ tan x = t.

Differentiate both sides w.r.t x, we get.

⇒ sec²x dx = dt.

Put the value in the equation, we get.

⇒ I₄ + I₆ = ∫t⁴ dt.

⇒ I₄ + I₆ = t⁵/5 + c.

Put the value of t = tan x in the equation, we get.

⇒ I₄ + I₆ = tan⁵ x/5 + c.

As we can see that,

Value of a = 1/5  and  b = 0.

                                                                                                                       

MORE INFORMATION.

(1) = ∫sin x dx = - cos x + c.

(2) = ∫cos x dx = sin x + c.

(3) = ∫tan x dx = ㏒(sec x) + c = - ㏒(cos x) + c.

(4) = ∫cot x dx = ㏒(sin x) + c.

(5) = ∫sec x dx = ㏒(sec x + tan x) + c = - ㏒(sec x - tan x) + c = ㏒ tan(π/4 + x/2) + c.

(6) = ∫cosec x dx = - ㏒(cosec x + cot x) + c = ㏒(cosec x - cot x) + c = ㏒ tan(x/2) + c.

(7) = ∫sec x tan x dx = sec x + c.

(8) = ∫cosec x cot x dx = - cosec x + c.

(9) = ∫sec²xdx = tan x + c.

(10) = ∫cosec²xdx = - cot x + c.

Answered by SparklingBoy
305

-----------------------

♣ Given :-

  •  \bf { I_n = \int { tan}^{n} \: x \: dx(n > 1)}

  •  \bf If \: I_4 + I_6 = a. {tan}^{5}x + b {x}^{5} + C

-----------------------

♣ To Find :-

  • Values of a and b

-----------------------

♣ Answer :-

  •  \sf a = \dfrac{1}{5}

  • b = 0

-----------------------

♣ Step by step Explanation :-

We Have

  {I_n = \int { \tan}^{n} \:  \mathtt x \: d\mathtt x }

 \therefore I_n + I_{n + 2} =  \int {  \tan}^{n} \: \mathtt x  \: d\mathtt x  + \int {  \tan}^{n + 2} \: \mathtt x  \: d\mathtt x \\\\ \sf= \int ({  \tan}^{n} \: \mathtt x    + {  \tan}^{n + 2} \: \mathtt x)  \: d\mathtt x \\  \\  =   \sf\int  { \tan}^{n} \mathtt x  \: (1 +  { \tan}^{2} \mathtt x )  \: d\mathtt x  \\  \\  =  \sf \int { \tan}^{n} \mathtt x . { \sec}^{2} \mathtt x  \: d\mathtt x  \\  \\   :\longmapsto I_n + I_{n + 2} = \dfrac{{ \tan}^{n + 1} \mathtt x }{n + 1} +C

Putting n = 4 We Get ,

 \pmb{I_4+I_6 = \dfrac{ { \tan}^{5}x}{5}    + C }

Comparing it with the Given Equation :

\purple{ \large :\longmapsto  \underline {\boxed{{\bf a =  \frac{1}{5} } }}} \:  \:  \bold{and} \:  \: \purple{  \large \underline {\boxed{{\bf b = 0} }}}

 \LARGE\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \Huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

♣ Related Calculations :-

 \sf \int { \tan}^{n} \mathtt x. { \sec}^{2} \mathtt x \: d\mathtt x \\  \\  \sf Putting \:  \tan\mathtt x = t \\  \\  :\longmapsto  \sf  { \sec}^{2} \mathtt x \: d\mathtt x = dt \\  \\  :\longmapsto \sf \int { \tan}^{n} \mathtt x. { \sec}^{2} \mathtt x \: d\mathtt x  =  \int {t}^{n}  \: dt \\  \\  =   \sf\frac{ {t}^{n + 1} }{n + 1}  \\  \\  =     \sf\frac{ { \tan}^{n + 1}  \mathtt x}{n + 1}

-----------------------

♣ Additional Information :-

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ Commonl \text y \: \: Used \: \: \text Integrals }}}:

 \maltese \: \: \: \displaystyle \bf\int \dfrac{1}{x} \: dx =log |x + | C \\ \\ \maltese \: \: \: \displaystyle \bf\int {a}^{x} \: dx = \frac{ {a}^{x} }{log \: a} + C \\ \\ \maltese \: \: \: \displaystyle \bf\int sinx \: dx = - cosx + C \\ \\ \maltese \: \: \: \displaystyle \bf\int cosx \: dx =sinx + C \\ \\ \maltese \: \: \: \displaystyle \bf\int sec {}^{2} x \: dx =tanc + C \\ \\ \maltese \: \: \: \displaystyle \bf\int {cosec}^{2} x \: dx = - cotx + C \\ \\ \maltese \: \: \: \displaystyle \bf\int secx.tanx \: dx =secx + C \\ \\ \maltese \: \: \: \displaystyle \bf\int cosecx.cotx \: dx = - cosecx + C

-----------------------

Similar questions