Chemistry, asked by SANSITHA14, 3 months ago

Atomic number of Hydrogen like species
that have a wave length difference of 59.3
nm between first line of Balmer and first line
of Lyman series is?​

Answers

Answered by VishnuPriya2801
8

Answer:-

Given:-

Difference between the wave length of species in which it's atomic number is similar to Hydrogen between first line of balmer series and first line of Lyman series = 59.3 nm

We know;

 \sf \:  \dfrac{1}{ \lambda}  = R_H \left|  \dfrac{1}{ {n_1}^{2} }-  \dfrac{1}{ {n_2}^{2} }    \right|  {Z}^{2} \\  \\  \\  \implies \sf \:  \lambda =  \frac{1}{R_H  \left|  \dfrac{1}{ {n_1}^{2} }-  \dfrac{1}{ {n_2}^{2} } \right|  {Z}^{2} }

Where;

  • λ is the wavelength

  • \sf R_H is the Rydberg's constant. It's value is 1.09 × 10⁷ / m.

  • n₁ & n₂ are ground and excited states of the electrons

  • Z is the atomic number.

Also;

  • The values of n₁ & n₂ are 1 & 2 in the first Lyman series.

  • The values of n₁ & n₂ are 2 & 3 in the first balmer series.

Let , the wavelength in first Lyman series be λ and wavelength in first balmer series be λ.

According to the question;

 \implies \sf \:  \lambda_1 -\lambda_2  = 59.3 \: nm \\  \\  \\ \implies \sf \: \frac{1}{R_H  \left|  \dfrac{1}{ {2}^{2} }-  \dfrac{1}{ {3}^{2} }    \right|  {Z}^{2} }  - \frac{1}{R_H  \left|  \dfrac{1}{ {1}^{2} }-  \dfrac{1}{ {2}^{2} }    \right|  {Z}^{2} }  = 59.3 \times  {10}^{ - 9} m  \:  \:  \:  \: ( 1 \: nm =  {10}^{ - 9} \: m) \\  \\  \\ \implies \sf \: \frac{1}{R_H \times  {Z}^{2} }  \bigg( \frac{1}{ \frac{1}{4}  -  \frac{1}{9} }  -  \frac{1}{ \frac{1}{1}  -  \frac{1}{4} }  \bigg) = 59.3 \times  {10}^{ - 9} m \\  \\  \\ \implies \sf \: \frac{1}{ {Z}^{2} }  \bigg( \frac{1}{ \frac{9 - 4}{36} }  -  \frac{1}{ \frac{4 - 1}{4} }  \bigg) = 59.3 \times  {10}^{ - 9} m \times R_H \\  \\  \\ \implies \sf \: \frac{1}{ {Z}^{2} }  \bigg( \frac{  36}{5}  -  \frac{4}{3}  \bigg) = 59.3 \times  {10}^{ - 9} m \times  \frac{1.09 \times  {10}^{7} }{m}  \\  \\  \\ \implies \sf \: \frac{1}{ {Z}^{2} }  \bigg( \frac{ 108 - 20}{15}  \bigg) = 64.637 \times  {10}^{ - 2}  \\  \\  \\ \implies \sf \: \frac{1}{ {Z}^{2} }  \bigg( \frac{ 88}{15}  \bigg) = 64637 \times  {10}^{ - 5} \\  \\  \\ \implies \sf \: \frac{1}{ {Z}^{2} } = 64637 \times  \frac{1}{100000}  \times  \frac{  15}{88}  \\  \\  \\ \implies \sf \: {Z}^{2}  =  \frac{100000 \times 88}{64637 \times 15}  \\  \\  \\ \\ \implies \sf \: {Z}^{2}   \approx 9 \\  \\  \\ \implies \boxed{ \red{ \sf \:Z = 3}} \\  \\

∴ The atomic number of the required element is 3.


S4MAEL: Splendid
VishnuPriya2801: Thanks bro :)
Answered by mavigaming31
0

Answer:

Answer:-

Given:-

Difference between the wave length of species in which it's atomic number is similar to Hydrogen between first line of balmer series and first line of Lyman series = 59.3 nm

We know;

\begin{gathered} \sf \: \dfrac{1}{ \lambda} = R_H \left| \dfrac{1}{ {n_1}^{2} }- \dfrac{1}{ {n_2}^{2} } \right| {Z}^{2} \\ \\ \\ \implies \sf \: \lambda = \frac{1}{R_H \left| \dfrac{1}{ {n_1}^{2} }- \dfrac{1}{ {n_2}^{2} } \right| {Z}^{2} } \end{gathered}

λ

1

=R

H

n

1

2

1

n

2

2

1

Z

2

⟹λ=

R

H

n

1

2

1

n

2

2

1

Z

2

1

Where;

λ is the wavelength

\sf R_HR

H

is the Rydberg's constant. It's value is 1.09 × 10⁷ / m.

n₁ & n₂ are ground and excited states of the electrons

Z is the atomic number.

Also;

The values of n₁ & n₂ are 1 & 2 in the first Lyman series.

The values of n₁ & n₂ are 2 & 3 in the first balmer series.

Let , the wavelength in first Lyman series be λ₂ and wavelength in first balmer series be λ₁.

According to the question;

\begin{gathered} \implies \sf \: \lambda_1 -\lambda_2 = 59.3 \: nm \\ \\ \\ \implies \sf \: \frac{1}{R_H \left| \dfrac{1}{ {2}^{2} }- \dfrac{1}{ {3}^{2} } \right| {Z}^{2} } - \frac{1}{R_H \left| \dfrac{1}{ {1}^{2} }- \dfrac{1}{ {2}^{2} } \right| {Z}^{2} } = 59.3 \times {10}^{ - 9} m \: \: \: \: ( 1 \: nm = {10}^{ - 9} \: m) \\ \\ \\ \implies \sf \: \frac{1}{R_H \times {Z}^{2} } \bigg( \frac{1}{ \frac{1}{4} - \frac{1}{9} } - \frac{1}{ \frac{1}{1} - \frac{1}{4} } \bigg) = 59.3 \times {10}^{ - 9} m \\ \\ \\ \implies \sf \: \frac{1}{ {Z}^{2} } \bigg( \frac{1}{ \frac{9 - 4}{36} } - \frac{1}{ \frac{4 - 1}{4} } \bigg) = 59.3 \times {10}^{ - 9} m \times R_H \\ \\ \\ \implies \sf \: \frac{1}{ {Z}^{2} } \bigg( \frac{ 36}{5} - \frac{4}{3} \bigg) = 59.3 \times {10}^{ - 9} m \times \frac{1.09 \times {10}^{7} }{m} \\ \\ \\ \implies \sf \: \frac{1}{ {Z}^{2} } \bigg( \frac{ 108 - 20}{15} \bigg) = 64.637 \times {10}^{ - 2} \\ \\ \\ \implies \sf \: \frac{1}{ {Z}^{2} } \bigg( \frac{ 88}{15} \bigg) = 64637 \times {10}^{ - 5} \\ \\ \\ \implies \sf \: \frac{1}{ {Z}^{2} } = 64637 \times \frac{1}{100000} \times \frac{ 15}{88} \\ \\ \\ \implies \sf \: {Z}^{2} = \frac{100000 \times 88}{64637 \times 15} \\ \\ \\ \\ \implies \sf \: {Z}^{2} \approx 9 \\ \\ \\ \implies \boxed{ \red{ \sf \:Z = 3}} \\ \\\end{gathered}

⟹λ

1

−λ

2

=59.3nm

R

H

2

2

1

3

2

1

Z

2

1

R

H

1

2

1

2

2

1

Z

2

1

=59.3×10

−9

m(1nm=10

−9

m)

R

H

×Z

2

1

(

4

1

9

1

1

1

1

4

1

1

)=59.3×10

−9

m

Z

2

1

(

36

9−4

1

4

4−1

1

)=59.3×10

−9

m×R

H

Z

2

1

(

5

36

3

4

)=59.3×10

−9

m

1.09×10

7

Z

2

1

(

15

108−20

)=64.637×10

−2

Z

2

1

(

15

88

)=64637×10

−5

Z

2

1

=64637×

100000

1

×

88

15

⟹Z

2

=

64637×15

100000×88

⟹Z

2

≈9

Z=3

∴ The atomic number of the required element is 3.

Explanation:

plz mark brainlist

Similar questions