Math, asked by parvd, 1 year ago

@siddharth bhaiya(*Brainly teacher*) please try your best to answer!

Number of integers in the range of the given range of the function f(x).?

Other users please answer if you know else leave.

Thanks
I will be delightful to offer 100 points for the correct and appropriate answer!
X belongs to {R}-0
———————————-

Attachments:

Answers

Answered by siddhartharao77
10

Answer:

0

Step-by-step explanation:

Answer:

0

Step-by-step explanation:

Given f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

(i) Domain:

Equate the denominator to 0 to find the value of x.

⇒ x³ + 2x² + 2x + 1 = 0

⇒ x³ + x² + x + x² + x + 1 = 0

⇒ x(x² + x + 1) + (x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1  --- Cannot be considered)

⇒ x + 1 = 0

⇒ x = -1

Therefore:

Domain = (-∞,-1) ∪ (-1,∞)

In real numbers, the denominator cannot be 0.

x ≠ 0.

So, f(0) ≠ 2.

(ii) Range:

Given: f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

Rearrange them into groups.

= (x³ + x² + 2x + x² + x + 2)/(x³ + x² + x + x + x + 1)

= [x(x² + x + 2) + (x² + x + 2)]/[x(x² + x + 1) + (x² + x + 1)]

= [(x + 1)(x² + x + 2)]/[(x + 1)(x² + x + 1)]

= [(x² + x + 2)]/[(x² + x + 1)]

Let f(x) = y and rearrange the equation.

y = (x² + x + 2)/(x² + x + 1)

⇒ y(x² + x + 1) = x² + x + 2

⇒ x²y + xy + y = x² + x + 2

⇒ x²y + xy + y - x² - x - 2 = 0

⇒ (y - 1)x² + (y - 1)x + y - 2 = 0

We know that the Quadratic formula:

x = -b ± √b² - 4ac/2a

The solutions of x are real when b² - 4ac ≥ 0

Here, a = (y - 1), b = (y - 1), c = y - 2

Now,

Find the inequality for the set of values of y.

⇒ b² - 4ac ≥ 0

⇒ (y - 1)² - 4(y - 1)(y - 2) ≥ 0

⇒ y² + 1 - 2y - 4[y² - 2y - y + 2] ≥ 0

⇒ y² + 1 - 2y - 4y² + 8y + 4y - 8 ≥ 0

⇒ -3y² + 10y - 7 ≥ 0

⇒ -(3y² - 10y + 7) ≥ 0

⇒ -(3y² - 3y - 7y + 7) ≥ 0

⇒ -(3y(y - 1) - 7(y - 1)) ≥ 0

⇒ -(y - 1)(3y - 7) ≥ 0

⇒ (y - 1)(3y - 7) ≤ 0

⇒ y = 1, 7/3

∴ y ∈ R

Range = (1, 7/3]

Here, the integer value is 2.

But, y≠ 2.

Therefore, the number of integers = 0.

Hope it helps!


Thatsomeone: Nice bro ✌
siddhartharao77: Thanks to both of you brothers
Answered by rufusk196
1

0 IS THE ANSWER

Given f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

(i) Domain:

Equate the denominator to 0 to find the value of x.

⇒ x³ + 2x² + 2x + 1 = 0

⇒ x³ + x² + x + x² + x + 1 = 0

⇒ x(x² + x + 1) + (x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1  --- Cannot be considered)

⇒ x + 1 = 0

⇒ x = -1

Therefore:

Domain = (-∞,-1) ∪ (-1,∞)

In real numbers, the denominator cannot be 0.

x ≠ 0.

So, f(0) ≠ 2.

(ii) Range:

Given: f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

Rearrange them into groups.

= (x³ + x² + 2x + x² + x + 2)/(x³ + x² + x + x + x + 1)

= [x(x² + x + 2) + (x² + x + 2)]/[x(x² + x + 1) + (x² + x + 1)]

= [(x + 1)(x² + x + 2)]/[(x + 1)(x² + x + 1)]

= [(x² + x + 2)]/[(x² + x + 1)]

Let f(x) = y and rearrange the equation.

y = (x² + x + 2)/(x² + x + 1)

⇒ y(x² + x + 1) = x² + x + 2

⇒ x²y + xy + y = x² + x + 2

⇒ x²y + xy + y - x² - x - 2 = 0

⇒ (y - 1)x² + (y - 1)x + y - 2 = 0

We know that the Quadratic formula:

x = -b ± √b² - 4ac/2a

The solutions of x are real when b² - 4ac ≥ 0

Here, a = (y - 1), b = (y - 1), c = y - 2

Now,

Find the inequality for the set of values of y.

⇒ b² - 4ac ≥ 0

⇒ (y - 1)² - 4(y - 1)(y - 2) ≥ 0

⇒ y² + 1 - 2y - 4[y² - 2y - y + 2] ≥ 0

⇒ y² + 1 - 2y - 4y² + 8y + 4y - 8 ≥ 0

⇒ -3y² + 10y - 7 ≥ 0

⇒ -(3y² - 10y + 7) ≥ 0

⇒ -(3y² - 3y - 7y + 7) ≥ 0

⇒ -(3y(y - 1) - 7(y - 1)) ≥ 0

⇒ -(y - 1)(3y - 7) ≥ 0

⇒ (y - 1)(3y - 7) ≤ 0

⇒ y = 1, 7/3

∴ y ∈ R

Range = (1, 7/3]

Here, the integer value is 2.

But, y≠ 2.

Therefore, the number of integers = 0.

Given f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

(i) Domain:

Equate the denominator to 0 to find the value of x.

⇒ x³ + 2x² + 2x + 1 = 0

⇒ x³ + x² + x + x² + x + 1 = 0

⇒ x(x² + x + 1) + (x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1) = 0

⇒ (x + 1)(x² + x + 1  --- Cannot be considered)

⇒ x + 1 = 0

⇒ x = -1

Therefore:

Domain = (-∞,-1) ∪ (-1,∞)

In real numbers, the denominator cannot be 0.

x ≠ 0.

So, f(0) ≠ 2.

(ii) Range:

Given: f(x) = (x³ + 2x² + 3x + 2)/(x³ + 2x² + 2x + 1)

Rearrange them into groups.

= (x³ + x² + 2x + x² + x + 2)/(x³ + x² + x + x + x + 1)

= [x(x² + x + 2) + (x² + x + 2)]/[x(x² + x + 1) + (x² + x + 1)]

= [(x + 1)(x² + x + 2)]/[(x + 1)(x² + x + 1)]

= [(x² + x + 2)]/[(x² + x + 1)]

Let f(x) = y and rearrange the equation.

y = (x² + x + 2)/(x² + x + 1)

⇒ y(x² + x + 1) = x² + x + 2

⇒ x²y + xy + y = x² + x + 2

⇒ x²y + xy + y - x² - x - 2 = 0

⇒ (y - 1)x² + (y - 1)x + y - 2 = 0

We know that the Quadratic formula:

x = -b ± √b² - 4ac/2a

The solutions of x are real when b² - 4ac ≥ 0

Here, a = (y - 1), b = (y - 1), c = y - 2

Now,

Find the inequality for the set of values of y.

⇒ b² - 4ac ≥ 0

⇒ (y - 1)² - 4(y - 1)(y - 2) ≥ 0

⇒ y² + 1 - 2y - 4[y² - 2y - y + 2] ≥ 0

⇒ y² + 1 - 2y - 4y² + 8y + 4y - 8 ≥ 0

⇒ -3y² + 10y - 7 ≥ 0

⇒ -(3y² - 10y + 7) ≥ 0

⇒ -(3y² - 3y - 7y + 7) ≥ 0

⇒ -(3y(y - 1) - 7(y - 1)) ≥ 0

⇒ -(y - 1)(3y - 7) ≥ 0

⇒ (y - 1)(3y - 7) ≤ 0

⇒ y = 1, 7/3

∴ y ∈ R

Range = (1, 7/3]

Here, the integer value is 2.

But, y≠ 2.

Therefore, the number of integers = 0.

Similar questions