Math, asked by sananiaz076, 2 months ago

Attempt the given questions.

Q1. Let X have a binomial distribution with n = 9 and p = 1/5. Find P(X=4), P(X=6) and P(X=9).​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that X have a binomial distribution with

\rm :\longmapsto\:n = 9

\rm :\longmapsto\:p = \dfrac{1}{5}

We know,

\rm :\longmapsto\: p+ q = 1

\rm :\longmapsto\: \dfrac{1}{5} + q = 1

\rm :\longmapsto\:q = 1 - \dfrac{1}{5}

\rm :\longmapsto\:q =  \dfrac{5 - 1}{5}

\rm :\longmapsto\:q =  \dfrac{4}{5}

Also,

Binomial Distribution is given by

\rm :\longmapsto\:P(r) = \:  ^nC_r \:  {p}^{r}  {q}^{n - r}

where,

  • n = number of independent trials

  • p = probability of success

  • q = probability of failure

  • r = random variable

Consider,

\bf :\longmapsto\:P(4)

\rm :\ = \:  \:  ^nC_4 \:  {p}^{4}  {q}^{n - 4}

On substituting the values of n, p and q, we get

\rm \:  =  \:  \: ^9C_4 \:  { \bigg(\dfrac{1}{5}  \bigg)}^{4} { \bigg(\dfrac{4}{5}  \bigg)}^{9 - 4}

\rm \:  =  \:  \: \dfrac{9!}{4! \: 5!}  \:  { \bigg(\dfrac{1}{5}  \bigg)}^{4} { \bigg(\dfrac{4}{5}  \bigg)}^{5}

\rm \:  =  \:  \: \dfrac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}  \times \dfrac{ {4}^{5} }{ {5}^{9} }

\rm \:  =  \:  \: 126 \times \dfrac{ {4}^{5} }{ {5}^{9} }

\bf\implies \:P(4) = \dfrac{126 \times  {4}^{5} }{ {5}^{9} }

Consider,

\bf :\longmapsto\:P(6)

\rm :\ = \:  \:  ^nC_6 \:  {p}^{6}  {q}^{n - 6}

On substituting the values of n, p and q, we get

\rm \:  =  \:  \: ^9C_6 \:  { \bigg(\dfrac{1}{5}  \bigg)}^{6} { \bigg(\dfrac{4}{5}  \bigg)}^{9 - 6}

\rm \:  =  \:  \: \dfrac{9!}{6! \: 3!}  \:  { \bigg(\dfrac{1}{5}  \bigg)}^{6} { \bigg(\dfrac{4}{5}  \bigg)}^{3}

\rm \:  =  \:  \: \dfrac{9 \times 8 \times 7 }{ 3 \times 2 \times 1}  \times \dfrac{ {4}^{3} }{ {5}^{9} }

\rm \:  =  \:  \: 84 \times \dfrac{ {4}^{3} }{ {5}^{9} }

\bf\implies \:P(6) = \dfrac{84\times  {4}^{3} }{ {5}^{9} }

Consider,

\bf :\longmapsto\:P(6)

\rm :\ = \:  \:  ^nC_9 \:  {p}^{9}  {q}^{n - 9}

On substituting the values of n, p and q, we get

\rm \:  =  \:  \: ^9C_9 \:  { \bigg(\dfrac{1}{5}  \bigg)}^{9} { \bigg(\dfrac{4}{5}  \bigg)}^{9 - 9}

\rm \:  =  \:  \: \dfrac{9!}{9! \: 0!}  \:  { \bigg(\dfrac{1}{5}  \bigg)}^{9} { \bigg(\dfrac{4}{5}  \bigg)}^{0}

\rm \:  =  \:  \: \dfrac{1}{ {5}^{9} }

\bf\implies \:P(9) = \dfrac{1}{ {5}^{9} }

Additional Information :-

In Binomial Distribution,

  • Mean = np

  • Variance = npq

  • Mean > Variance
Similar questions