Math, asked by rihanna50, 1 year ago

Attention!!!


Prove it :


(CosecØ-cotØ)² = (1-cosØ)/(1+cosØ)​

Answers

Answered by Anonymous
71

\color{blue}\huge\underline\mathfrak{Solution:-}

Taking LHS,

(CosecØ-cotØ)²

=> [(1/sinØ) - (cosØ/sinØ)]²

=> [(1-cosØ)/sinØ]²

=> (1-cosØ)²/sin²Ø

Taking RHS,

(1-cosØ)/(1+cosØ)

Rationalise it :

=> [(1-cosØ)(1-cosØ)]\[(1+cosØ)(1-cosØ)

=> (1-cosØ)²/(1-cos²Ø) [ -b² = (a+b)(a-b) ]

=> (1-cosØ)²/sin²Ø

LHS = RHS

Hence proved!

___________________________

\large\underline\bold\red{Identity\:used:-}

★ 1 - cos²Ø = sin²Ø

\large\underline\bold\red{Trigonometrical\:Ratios\:used:-}

★ cosecØ = 1/sinØ

★ cotØ = cosØ/sinØ

Answered by Blaezii
13

Answer:

Proved.

Step-by-step explanation:

Given -

(CosecØ-cotØ)² = (1-cosØ)/(1+cosØ)​

To Prove -

(CosecØ-cotØ)² = (1-cosØ)/(1+cosØ)​

Proof -

Firstly we have to take LHS & RHS.

So,

Taking LHS -

(CosecØ-cotØ)²

Now,

\sf\\ \\\implies \left[\dfrac{1}{sin\theta}- \dfrac{cos\theta}{sin\theta^2}\right]\\ \\ \\ \implies \dfrac{1-cos\theta}{sin\theta^2}\\ \\ \\ \implies \dfrac{1-cos\theta^2}{sin^2\theta}

Now,

Taking RHS,

\sf \dfrac{1-cos\theta}{1+cos\theta}

__________{ Rationalising it. }

\sf \\ \\\implies \left[\dfrac{(1-cos\theta)(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}\right]\\ \\ \\\implies \dfrac{(1-cos\theta)^2}{(1-cos^2\theta)}\quad[(a+b)(a-b)=a^2-b^2]\\ \\ \\\implies \dfrac{1-cos\theta^2}{sin^2\theta}

LHS = RHS.

Hence, Proved.

\rule{300}{1.5}

Identity Used -

⇒ 1 - cos²Ø = sin²Ø

Similar questions