Math, asked by MONU6411, 1 year ago

AtulboughtamachineforRs.4,50,000andsoldittoIrfanataprofit.Irfanlatersoldthe machinetoDanishatalossof10%forRs.4,95,000.Theprofit%earnedbyAtulis

Answers

Answered by prettystefina11
0

Answer:

The profit percent earned by Atul is x% = 22.22%

Step-by-step explanation:

Atul:

C.P of the machine (C.P) = 4,50,000 Rs

Let the profit % = x%

S.P of the machine (S.P) = C.P + x% of C.P

                        = 4,50,000 + x% of 4,50,000

                        = 4,50,000(1 + x/100)

Irfan:

C.P of the machine (C.P1) = 4,50,000(1 + x/100)

The loss % = 10%

S.P of the machine (S.P1) = C.P1 - 10% of C.P1

                        = 4,50,000(1 + x/100) - 10% of [4,50,000(1 + x/100)]

                        = 4,50,000(1 + x/100)[1 - 10/100]

Given S.P1 = Rs 4,95,000

=> 4,50,000(1 + x/100)[1 - 10/100] = 4,95,000

=> 4,50,000[(100+x)/100][90/100] = 4,95,000

=> 45[100+x](9) = 49500

=> 100 + x = 49500/405

=> 100 + x = 122.22

=> x = 22.22%

Therefore,  

The profit percent earned by Atul is x% = 22.22%

Answered by ujalasingh385
0

Answer:

The profit percent earned by Atul is x% = 22.22%

Step-by-step explanation:

In this question, We have been given that

Atul bought machine for Rs.4,50,000 and sold it to irfan for Profit. Irfan sold later to Danish at a loss of 10% for Rs.4,95,000

Therefore, According to the question;

Atul:

C.P of the machine (C.P) = 4,50,000 Rs

Let the profit % = X%

S.P of the machine (S.P) = C.P + X% of C.P

                                        = 4,50,000 + X% of 4,50,000

                                        = 4,50,000(1 + \frac{X}{100})

Irfan:

C.P of the machine (C.P) = 4,50,000(1 + \frac{X}{100})

The loss % = 10%

S.P of the machine (S.P) = C.P1 - 10% of C.P

                                          = 4,50,000(1 + \frac{X}{100})- 10% of [4,50,000(1 +\frac{X}{100})]

                                         = 4,50,000(1 + \frac{X}{100})[1 - \frac{10}{100}]

Given S.P = Rs 4,95,000

=> 4,50,000(1 +\frac{X}{100})[1 - \frac{10}{100}] = 4,95,000

=> 4,50,000[\frac{(100+x)}{100}][\frac{90}{100}] = 4,95,000

=> 45[100+x](9) = 49500

=> 100 + x = \frac{49500}{405}

=> 100 + x = 122.22

=> x = 22.22%

Therefore,  

The profit percent earned by Atul is x% = 22.22%

Similar questions